建设工程行业资讯新闻列表 人工客服公众号
建设工程资讯新闻
新闻时间:2020-01-30,来源:建筑培训,作者:

钟公隧道造价

1、帮忙做一个1998年隧道火灾事故统计

一、1971年法国克洛次隧道火灾 1971年3月,法国一列货物列车与一列油罐列车在进入克洛次隧道北口附近时相撞,油罐列车爆炸起火,货物列车司机和副司机死亡,救援的消防人员迅速赶到现场,在油罐列车副司机的紧密配合下,果断地将即将燃着的部分油罐列车与着火部分分离,拉出隧道,防止了事故蔓延扩大。为此,得到法国国营铁路部门的表彰。着火的油罐一直燃烧一昼夜,致使部分隧道倒塌,经整修96天后才通车。 二、1972年日本北陆隧道火灾 1972年11月6日凌晨1时30分,日本50次旅客快车在北陆干线上以每小时60公里的速度运行,行至敦贺——今庄车站之间的北陆隧道(全长13.8公里)内时,第11列的餐车起火,列车乘务人员奋力补救,车长拉紧急制动阀,同时用无线电话向电力机车司机报告这一情况,司机立即采取紧急措施,使列车停在距北陆隧道敦贺方面入口处约5.3公里的隧道内。随后迅速将前后车厢与着火餐车分离,相距60米,并及时切断电源。在事故现场又成立防止事故对策指挥部,积极组织抢救。在警察、消防自卫队、医院各方面支援、配合下,救出大部分旅客和值乘人员,并将火扑灭。直至22点45分全线恢复通车。 这次事故造成人员伤亡惨重,全列车有旅客和值乘人员782人,其中30人死亡、714人受伤;着火区车的吸烟室、乘务员室、餐厅、厨房设备、地板全部烧毁,车辆地板下面的机器、蓄电池箱也被烧坏,其他设备均有轻度烧损、变形。事故后,北陆隧道公司成立了北陆隧道列车火灾事故对策本部,该公司副总裁任本部长;总裁率领该公司的阪田常务理事和运输局车务科长、工厂局车辆课长亲临现场研究解决事故的起因和抢救情况,解决实际问题。铁路管理局前往吊慰死者家属,与受伤者家属取得联系;及时向死者伤者的家属发放慰问金,死者发给10万日元,伤者发给5千—3万日元。经过深入细致的调查,根据福井地方法院调查判决,确实是餐车吸烟室座椅下电采暖接线不良,造成漏电所致。 三、1979年日本烧津隧道火灾 1979年7月11日傍晚,日本静冈至烧津间2050米长的隧道下行线内,在距烧津出口侧400米处,因两辆卡车及随后的车相互碰撞引起火灾,死亡7人,伤1人,烧毁汽车174辆。这场大火后,整整用了两个月进行整修,其整修时的土建和设备工程费,共用了34亿日元,隧道停止通行两个月,又减少收入33亿日元,这起火灾发生在距出口侧400米处,即距入口1520多米,在这段距离内存在大量后续车,火灾时烟气浓重,蔓延速度快,后续车难以及时退车疏散。故大火发生后,有30辆车退出隧道,16辆车由交通管理队引导疏散,174辆被烧毁。这场大火一直烧到7月20日10时30分,消防队才确认已全部把火扑灭,烧了将近10天时间。四、1987年中国陇海线十里山隧道火灾 1987年8月23日7时34分,由兰州站发出的1818次货物列车在陇海线兰州东——桑园间1724公里461米处,穿越十里山二号隧道时因钢轨折煌,造成机后六、七辆罐车脱转颠覆,16个油罐车在洞内起火,烈火燃烧了一昼夜,使陇海线天兰段中断行车201小时56分,三名押运人员死亡,报废货车23辆,大破3辆,中破一辆,隧道裂损179米,损坏线路763米,直接经济损失240万元。事故的直接原因是因钢轨疲功损伤,没有及时更换造成的。 五、1987年美国斯普罗乌尔隧道火灾 1987年11月5日12时50分,运行通过斯普罗乌尔隧道(位于西弗吉尼亚洲)的一列车车长通报距隧道入口处不远的树林中发现不大的火灾。20分钟以后,同方向运行的另一列列车也通报在隧道的东部有火灾。很显然,空气流随着行驶通过的列车,形成了强大的风力,燃烧的树叶叶片卷入隧道引燃了隧道的木护板。 救援消防队在40分钟以后到达事故现场,但已不可能扑灭火灾。火焰已从隧道入口的两侧蔓延,形成了浓密的烟幕。据对火灾的估计,情况已经失去控制,最不得已的办法是让隧道内的所有可燃物再燃烧一些时候,到最后自行熄灭。但是,这个方案从三方面来看不能采用: ——该隧道长2523.3米,它的所有护墙板都是木制的,即燃烧将持续很长时间; ——铺设在隧道的木墙板、拱顶和墙壁之间的隔热层,可能引起更剧烈的过热情况,然后破坏坚硬岩层,因而使隧道遭受损坏; ——在隧道上面的坚硬岩层内夹有薄煤层,薄煤层的燃烧可能导致不可估量的灾难。 在讨论所有可能的方案时,救援工作的领导人和对煤矿矿井灭火有经验的皮波基一卡乌尔公司专家一起研究,得出了必须继续进行灭火的结论。 根据专家的意见,通过铁路把推土机和挖掘机运到火灾现场,用它们在两昼夜内用土堵塞隧道的两个洞口。“土档”封死了进入隧道的氧气通路。两面洞口的“土档”高4.87米,保留了一个小孔,通过这个孔安装了直径为1.22米,长12.2米的管子。利用气泵把二氧化碳从罐内抽出,经过这根管子压入洞内,管道周围建造了尺寸为1.22×2.44米的集气管,在那里能使化学物质和氧气流的作用减缓。在必要的情况下这同一条管子还可用作事故救援队进入隧道的通道。 隧道东西洞口高5.18米的“土档”,也装有直径0.61米,长12.1米的管子,在管子上装配了直径为81.3厘米的抽风机,抽走废的化学物质,并且利用传感器材隧道内部温度,气流氧气含量和化学物质的浓度进行监测。 火灾发生的第4天即11月8日,隧道内的温度降到88度,氧气的含量为5.5%,一氧化碳含量为9.75%,二氧化碳的含量则超过了仪表刻度标的范围,总的说来,隧道内的二氧化碳已经降到31.3万立升。 到11月8日晚,已经可以看出使用二氧化碳不能得到预期的效果,因此决定向隧道内压入含氧的泡沫制剂。 在火灾发生的第6天即11月10日,在研究分析隧道内的温度降到88度状况以后决定拆除隧道后面入口的“土档”,但是,这个决定是错误的,因为这样做的结果:空气进入使火焰又加大,这样“土档”没办法重新恢复,隧道内的温度再一次升高到92.2度,因此,在第7天采取了用水淹没隧道的决定,为此需要不仅从附近的河流用水泵汲取400万立升的水,同时要用坚凝固剂(聚氨基甲酷酯)使“土档”加固整修。随着隧道内的水位升高,洞内温度下降,到第11天已降到46.1度。然后隧道内浸满了含氮泡沫混合物,温度再降到9.4度。此后两面洞口“土档”部分打开,同时隧道东西通风机开始往隧道送入空气。几小时以后,当能够看清时,新的火情不再出现,利用推土机把“土档”拆除。隧道水位达到5米,通过临时修建的沉淀池,水又送回河流。 在水排出以后,推土机和挖掘机从两个方向开始清理隧道,经过一昼夜清理隧道工作,又经过一天,隧道内的线路修复。到第15天,列车恢复正常运行。这次灭火共耗费25.5万美元。 六、1990年中国襄渝线梨子园隧道火灾 1990年7月13日14时16分,0201次货物列车(编组55辆总重3379吨,总长62.0米),由韶山—1型605号机车牵引,行至襄渝线510公里232米至512公里8米处梨子园隧道(长1776米)内发生爆炸火灾事故。事故造成列车颠覆脱轨17辆,人员伤亡18人,其中直接死亡2人,轻伤5人,因自发抢险牺牲2人,重伤7人,轻伤2人,损失70号车用汽油598.2吨,大蒜293吨,篷布8方,车辆报废28辆。损坏线路340米,隧道严重损坏150米,接触网2500米,通信电缆2.7公里,直接经济损失约500万元。7月25日14时56分起修复完毕,26日13时50分开通线路。 经过调查分析,确认该事故是由于油罐超载,孔盖密闭不严,在大气温度急剧增高,罐内压强增大,产生油气外溢,甚至喷出油柱,511公里127米正是隧道圆曲线的中部,此处挥发油气易积累,形成气团,当油气浓度达到一定程度,遇火种即可爆炸,此处有一接触网悬挂点,绝缘表面放电而引起爆炸。为了认真吸取教训,防止类似事故发生,铁道部特别要求各铁路局建立健全装卸、交接、检查和管理的各项制度,切实解决油罐车的防火问题。火警了望起源军事了望,它经历了军事了望与火警了望并用,到自成体系,独立服务的发展过程。 古代奴隶主或封建诸侯之间,因争领地而经常发生战争。为了及时掌握敌方的动向,尽早做好迎战的准备,双方都在自己的领地建造了了望楼。虽然这些了望楼建造的初衷,是为了军事上需要,但后来又肩负起了火警了望之职。因为频频发生的火灾,同样使大众受难,国力衰退。人们在灾难中寻求快速报警的方法,最终将目光对准了了望楼,通过了望来及时发现火警。这种以军事了望为主,火警了望为辅的了望方式,是火警了望出现的最初形式。 到了北宋年间,军事与火警兼用的了望楼,已与城市的发展不相适应,因此,人们开始建造“了望楼”,以满足城市发展的需要。从此,火警了望,专门为火灾报警服务。另外,在望火楼下驻有灭火人员以及备有多种灭火器材,这种形式,可以说是近代消防的雏形。它的形成在整个消防发展历史中具有重大的意义。 火警了望的独立使用,虽然解决了及时发现火警的问题,然而,对火警的具体路段尚不得而知。直到清潮后期,对正确传递火警信息的问题才得到缓解。人们将城市划分为若干区域,用望火楼钟声的次数来代表某一区域,有些地方还以白天挂旗,夜间点灯的方式作为传播工具。 1918年,电话开始传入我国。火灾报警不再需要挂旗,点灯或按区域鸣钟,而是利用望火楼与消防队之间的直线电话来传播火警信息。虽然,挂旗、点灯或鸣钟的报警方式被遗弃,但火警了望直至今天,仍起着不可替代的作用。

2、赣南第一长遂道是哪里

赣州至瑞金的钟公隧道4800+赣州至崇义有一个4000+的

3、中国所有高速公路里最长的隧道是什么?

中国所有高速公路里最长的隧道是秦岭终南山公路隧道,这是中国自行设计施工的世界最长的双洞单向公路隧道。

4、我今天下午两点钟走了新彩隧道的公交车道会被拍照罚款吗?

那要看那个时间段云不允许走一般情况下是有时间点限制的,早晚高峰的情况下肯定是不可以走。

5、秦陵钟南山隧道多长

秦岭终南山公路隧道单洞长18.02公里 双洞共长36.04公里 15分钟即可穿越,西安到柞水由3小时缩短为40分钟。

6、一列火车匀速行驶,经过一条长1200m的隧道需要50秒钟,整列火车完全在隧道里的时间是30秒,

经过隧道时间指的是从火车头进入隧道到火车尾出隧道的时间。由条件可知,火车进入和离开速度的这两段时间为50-30=20秒由于火车匀速,这两段时间相等,因此火车进入隧道的时间为20/2=10秒于是从火车进入隧道开始到火车头到达隧道出口(1200米长度)时间为30+10=40秒所以,火车速度为1200/40=30米/秒火车长度为10*30=300米

7、终南山的隧道长多少公里

我国目前最长的公路隧道——秦岭终南山隧道 陕西秦岭终南山公路隧道是目前排名世界总长度第二的公路隧道,15分钟就可穿越秦岭。 秦岭终南山隧道位于我国西部大通道内蒙古阿荣旗至广西北海国道上西安至柞水段,在青岔至营盘间穿越秦岭,隧道进口位于陕西省长安县石砭峪乡青岔村,出口位于陕西省柞水县营盘镇小峪街村,全长18.4公里,道路等级按高速公路,上下行双洞双车道设计,安全等级一级。设计行车速度每小时60至80公里,隧道横断面高5米、宽10.5米,双车道各宽3.75米。上、下行线两条隧道间每750米设紧急停车带一处,停车带有效长度30米,全长40米;每500米设行车横通道一处,横通道净宽4.5米,净高5.97米;每250米设人行横通道一处,断面净宽2米,净高2.5米。隧道内路面为水泥砼路面。隧道衬砌除进出口II类围岩地段及悬挂风机地段采用模筑衬砌外,洞身其余地段结合地质条件设计为复合式衬砌。隧道运营通风设三竖井分段纵向式通风。监控系统包括:交通监视和控制系统、安全系统、通讯系统、设备管理、收费、计算机控制、中央控制室七个监控系统。防火系统做到检测、报警的迅速、可靠,一般设置易识别的手动与自动相结合的多通道报警系统,通过消防设施、避难设施等进行消防救援。 终南山隧道2001年1月由国家发展计划委员会批准立项建设,设计工期为67个月,总投资约25亿元人民币。秦岭终南山隧道重大工程是“十五”期间陕西交通三大标志性工程之一,被誉为“中国第一长隧”的秦岭隧道横穿秦岭山脉,断层、涌水、岩爆、瓦斯爆炸等灾害频发,其中列入铁道部科研攻关项目的就有6大类、24个。隧道是沟通黄河经济圈与长江经济圈的交通枢纽,也是陕西省规划的“米”字形公路网主骨架西康公路中的重要组成部分,它的建成对促进西部大开发战略的实施和陕西省与周边省市的经济交流具有十分重要的意义。 秦岭终南山特长公路隧道是西安至安康高等级公路的控制性工程,与已建成的我国第一长隧道——西安安康铁路秦岭隧道并行。 这一隧道是国家规划的包头-西安-重庆-北海、银川-西安-武汉两条公路西部大通道共用的特大型控制性工程,是沟通黄河经济圈与长江经济圈的交通枢纽。隧道建成后,将使西安至柞水的公路里程缩短60公里,行车时间缩短2.5小时。 2001年,隧道试验段开始施工,2002年初全面开工,2004年12月13日——全线贯通,。工程开工后,参建单位仅用34个月就完成了36.04公里的主洞掘进任务,平均月掘进1060米。在山岭公路隧道中,其工程规模、主洞长度、主洞埋深、分段通风长度、竖井深度及直径均列全国第一位。为了打通秦岭隧道,中铁十八局集团引进了世界最先进的TBM隧道掘进机,指挥部先后输送近30名技术骨干到法国、德国、瑞典、挪威等国家学习。他们成立QC科技攻关小组,积极奖励技术革新和技术攻关成绩突出的个人,累计奖励资金达5万多元。为确保隧道掘进精度,隧道洞内外控制测量全部采用了GPS全球定位系统,贯通精度高程误差为1毫米,中线误差为12毫米,测量精度被专家称为“世界先进水平”。 秦岭隧道施工先后6次创造高产纪录、最高月掘进509米,达到了国内外特长隧道施工的新水平,相继荣获国家科技进步一等奖、鲁班奖、詹天佑奖等3项大奖和全国十大建设科技成就奖。 陕西秦岭终南山公路隧道有限责任公司为建设单位;铁道部第一勘察设计院承担设计,陕西省公路勘察设计院、重庆交通科研设计院参加;该工程由铁一局、铁五局、铁十二局、铁十八局进行施工;由重庆中宇监理咨询公司、西安方舟监理咨询公司、山西省交通工程监理总公司进行工程监理。由铁十二局创造了钻爆法单口月掘进429.5米的国内纪录。隧道掘进的线位控制,光面爆破效果等工序的质量等都取得了好的效果。 秦岭终南山特长公路隧道是一座世界级的超长隧道,也是我国乃至亚洲目前最长的公路隧道,施工技术难度大,建设周期长。在设计、施工、通风、监控、防灾、防排水、运营管理等方面正进行大量的科学研究,以确保隧道的建设和科学的运营管理。它的建成将进一步促进我国公路隧道建设水平的提高。 该隧道的建成必将是我国公路隧道建设史上的一个新的里程碑。

8、时间隧道

看一下《时间简史》吧,第二章 “空间和时间”这里是这章的正文:我们现在关于物体运动的观念来自于伽利略和牛顿。在他们之前,人们相信亚里士多德,他说物体的自然状态是静止的,并且只在受到力或冲击作用时才运动。这样,重的物体比轻的物体下落得更快,因为它受到更大的力将其拉向地球。 亚里士多德的传统观点还以为,人们用纯粹思维可以找出制约宇宙的定律:不必要用观测去检验它。所以,伽利略是第一个想看看不同重量的物体是否确实以不同速度下落的人。据说,伽利略从比萨斜塔上将重物落下,从而证明了亚里士多德的信念是错的。这故事几乎不可能是真的,但是伽利略的确做了一些等同的事--将不同重量的球从光滑的斜面上滚下。这情况类似于重物的垂直下落,只是因为速度小而更容易观察而已。伽利略的测量指出,不管物体的重量是多少,其速度增加的速率是一样的。例如,在一个沿水平方向每走10米即下降1米的斜面上,你释放一个球,则1秒钟后球的速度为每秒1米,2秒钟后为每秒2米等等,而不管这个球有多重。当然,一个铅锤比一片羽毛下落得更快,那是因为空气对羽毛的阻力引起的。如果一个人释放两个不遭受任何空气阻力的物体,例如两个不同的铅锤,它们则以同样速度下降。 伽利略的测量被牛顿用来作为他的运动定律的基础。在伽利略的实验中,当物体从斜坡上滚下时,它一直受到不变的外力(它的重量),其效应是它被恒定地加速。这表明,力的真正效应总是改变物体的速度,而不是像原先想像的那样,仅仅使之运动。同时,它还意味着,只要一个物体没有受到外力,它就会以同样的速度保持直线运动。这个思想是第一次被牛顿在1687年出版的《数学原理》一书中明白地叙述出来,并被称为牛顿第一定律。物体受力时发生的现象则由牛顿第二定律所给出:物体被加速或改变其速度时,其改变率与所受外力成比例。(例如,如果力加倍,则加速度也将加倍。)物体的质量(或物质的量)越大,则加速度越小,(以同样的力作用于具有两倍质量的物体则只产生一半的加速度。)小汽车可提供一个熟知的例子,发动机的功率越大,则加速度越大,但是小汽车越重,则对同样的发动机加速度越小。 除了他的运动定律,牛顿还发现了描述引力的定律:任何两个物体都相互吸引,其引力大小与每个物体的质量成正比。这样,如果其中一个物体(例如A)的质量加倍,则两个物体之间的引力加倍。这是你能预料得到的,因为新的物体A可看成两个具有原先质量的物体,每一个用原先的力来吸引物体B,所以A和B之间的总力加倍。其中一个物体质量大到原先的2倍,另一物体大到3倍,则引力就大到6倍。现在人们可以看到,何以落体总以同样的速率下降:具有2倍重量的物体受到将其拉下的2倍的引力,但它的质量也大到两倍。按照牛顿第二定律,这两个效应刚好互相抵消,所以在所有情形下加速度是同样的。 牛顿引力定律还告诉我们,物体之间的距离越远,则引力越小。牛顿引力定律讲,一个恒星的引力只是一个类似恒星在距离小一半时的引力的4分之1。这个定律极其精确地预言了地球、月亮和其他行星的轨道。如果这定律变为恒星的万有引力随距离减小得比这还快,则行星轨道不再是椭圆的,它们就会以螺旋线的形状盘旋到太阳上去。如果引力减小得更慢,则远处恒星的引力将会超过地球的引力。 亚里士多德和伽利略--牛顿观念的巨大差别在于,亚里士多德相信存在一个优越的静止状态,任何没有受到外力和冲击的物体都采取这种状态。特别是他以为地球是静止的。但是从牛顿定律引出,并不存在一个静止的唯一标准。人们可以讲,物体A静止而物体B以不变的速度相对于物体A运动,或物体B静止而物体A运动,这两种讲法是等价的。例如,我们暂时将地球的自转和它绕太阳的公转置之一旁,则可以讲地球是静止的,一列火车以每小时90英哩的速度向北前进,或火车是静止的,而地球以每小时90英哩的速度向南运动。如果一个人在火车上以运动的物体做实验,所有牛顿定律都成立。例如,在火车上打乓乒球,将会发现,正如在铁轨边上一张台桌上一样,乓乒球服从牛顿定律,所以无法得知是火车还是地球在运动。 缺乏静止的绝对的标准表明,人们不能决定在不同时间发生的两个事件是否发生在空间的同一位置。例如,假定在火车上我们的乓乒球直上直下地弹跳,在一秒钟前后两次撞到桌面上的同一处。在铁轨上的人来看,这两次弹跳发生在大约相距100米的不同的位置,因为在这两回弹跳的间隔时间里,火车已在铁轨上走了这么远。这样,绝对静止的不存在意味着,不能像亚里士多德相信的那样,给事件指定一个绝对的空间的位置。事件的位置以及它们之间的距离对于在火车上和铁轨上的人来讲是不同的,所以没有理由以为一个人的处境比他人更优越。 牛顿对绝对位置或被称为绝对空间的不存在感到非常忧虑,因为这和他的绝对上帝的观念不一致。事实上,即使绝对空间的不存在被隐含在他的定律中,他也拒绝接受。因为这个非理性的信仰,他受到许多人的严厉批评,最有名的是贝克莱主教,他是一个相信所有的物质实体、空间和时间都是虚妄的哲学家。当人们将贝克莱的见解告诉著名的约翰逊博士时,他用脚尖踢到一块大石头上,并大声地说:"我要这样驳斥它!" 亚里士多德和牛顿都相信绝对时间。也就是说,他们相信人们可以毫不含糊地测量两个事件之间的时间间隔,只要用好的钟,不管谁去测量,这个时间都是一样的。时间相对于空间是完全分开并独立的。这就是大部份人当作常识的观点。然而,我们必须改变这种关于空间和时间的观念。虽然这种显而易见的常识可以很好地对付运动甚慢的诸如苹果、行星的问题,但在处理以光速或接近光速运动的物体时却根本无效。 光以有限但非常高的速度传播的这一事实,由丹麦的天文学家欧尔·克里斯琴森·罗麦于1676年第一次发现。他观察到,木星的月亮不是以等时间间隔从木星背后出来,不像如果月亮以不变速度绕木星运动时人们所预料的那样。当地球和木星都绕着太阳公转时,它们之间的距离在变化着。罗麦注意到我们离木星越'远则木星的月食出现得越晚。他的论点是,因为当我们离开更远时,光从木星月亮那儿要花更长的时间才能达到我们这儿。然而,他测量到的木星到地球的距离变化不是非常准确,所以他的光速的数值为每秒14 英哩,而现在的值为每秒186000英哩。尽管如此,罗麦不仅证明了光以有限速度运动,并且测量了光速,他的成就是卓越的--要知道,这一切都是在牛顿发表《数学原理》之前11年进行的。 直到1865年,当英国的物理学家詹姆士·马克斯韦成功地将当时用以描述电力和磁力的部分理论统一起来以后,才有了光传播的真正的理论。马克斯韦方程预言,在合并的电磁场中可以存在波动的微扰,它们以固定的速度,正如池塘水面上的涟漪那样运动。如果这些波的波长(两个波峰之间的距离)为1米或更长一些,这就是我们所谓的无线电波。更短波长的波被称做微波(几个厘米)或红外线(长于万分之一厘米)。可见光的波长在百万分之40到百万分之80厘米之间。更短的波长被称为紫外线、X射线和伽玛射线。 马克斯韦理论预言,无线电波或光波应以某一固定的速度运动。但是牛顿理论已经摆脱了绝对静止的观念,所以如果假定光是以固定的速度传播,人们必须说清这固定的速度是相对于何物来测量的。这样人们提出,甚至在"真空"中也存在着一种无所不在的称为"以太"的物体。正如声波在空气中一样,光波应该通过这以太传播,所以光速应是相对于以太而言。相对于以太运动的不同观察者,应看到光以不同的速度冲他们而来,但是光对以太的速度是不变的。特别是当地球穿过以太绕太阳公转时,在地球通过以太运动的方向测量的光速(当我们对光源运动时)应该大于在与运动垂直方向测量的光速(当我们不对光源运动时)。1887年,阿尔贝特·麦克尔逊(后来成为美国第一个物理诺贝尔奖获得者)和爱德华·莫雷在克里夫兰的卡思应用科学学校进行了非常仔细的实验。他们将在地球运动方向以及垂直于此方向的光速进行比较,使他们大为惊奇的是,他们发现这两个光速完全一样! 在1887年到1905年之间,人们曾经好几次企图去解释麦克尔逊--莫雷实验。最著名者为荷兰物理学家亨得利克·罗洛兹,他是依据相对于以太运动的物体的收缩和钟变慢的机制。然而,一位迄至当时还不知名的瑞士专利局的职员阿尔贝特·爱因斯坦,在1905年的一篇著名的论文中指出,只要人们愿意抛弃绝对时间的观念的话,整个以太的观念则是多余的。几个星期之后,一位法国最重要的数学家亨利·彭加勒也提出类似的观点。爱因斯坦的论证比彭加勒的论证更接近物理,因为后者将此考虑为数学问题。通常这个新理论是归功于爱因斯坦,但彭加勒的名字在其中起了重要的作用。 这个被称之为相对论的基本假设是,不管观察者以任何速度作自由运动,相对于他们而言,科学定律都应该是一样的。这对牛顿的运动定律当然是对的,但是现在这个观念被扩展到包括马克斯韦理论和光速:不管观察者运动多快,他们应测量到一样的光速。这简单的观念有一些非凡的结论。可能最著名者莫过于质量和能量的等价,这可用爱因斯坦著名的方程E=mc^2来表达(这儿E是能量,m是质量,c是光速),以及没有任何东西能运动得比光还快的定律。由于能量和质量的等价,物体由于它的运动所具的能量应该加到它的质量上面去。换言之,要加速它将变得更为困难。这个效应只有当物体以接近于光速的速度运动时才有实际的意义。例如,以10%光速运动的物体的质量只比原先增加了0.5%,而以90%光速运动的物体,其质量变得比正常质量的2倍还多。当一个物体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。实际上它永远不可能达到光速,因为那时质量会变成无限大,而由质量能量等价原理,这就需要无限大的能量才能做到。由于这个原因,相对论限制任何正常的物体永远以低于光速的速度运动。只有光或其他没有内禀质量的波才能以光速运动。 相对论的一个同等卓越的成果是,它变革了我们对空间和时间的观念。在牛顿理论中,如果有一光脉冲从一处发到另一处,(由于时间是绝对的)不同的观测者对这个过程所花的时间不会有异议,但是他们不会在光走过的距离这一点上取得一致的意见(因为空间不是绝对的)。由于光速等于这距离除以所花的时间,不同的观察者就测量到不同的光速。另一方面,在相对论中,所有的观察者必须在光是以多快的速度运动上取得一致意见。然而,他们在光走过多远的距离上不能取得一致意见。所以现在他们对光要花多少时间上也不会取得一致意见。(无论如何,光所花的时间正是用光速--这一点所有的观察者都是一致的--去除光所走的距离--这一点对他们来说是不一致的。)总之,相对论终结了绝对时间的观念!这样,每个观察者都有以自己所携带的钟测量的时间,而不同观察者携带的同样的钟的读数不必要一致。 图2.1时间用垂直坐标测量,离开观察者的距离用水平坐标测量。观察者在空间和时间里的途径用左边的垂线表示。到事件去和从事件来的光线的途径用对角线表示。 每个观察者都可以用雷达去发出光脉冲或无线电波来测定一个事件在何处何时发生。脉冲的一部分由事件反射回来后,观察者可在他接收到回波时测量时间。事件的时间可认为是发出脉冲和脉冲反射回来被接收的两个时刻的中点;而事件的距离可取这来回过程时间的一半乘以光速。(在这意义上,一个事件是发生在指定空间的一点以及指定时间的一点的某件事。)这个意思已显示在图2.1上。这是空间--时间图的一个例子。利用这个步骤,作相互运动的观察者对同一事件可赋予不同的时间和位置。没有一个特别的观察者的测量比任何其他人更正确,但所有这些测量都是相关的。只要一个观察者知道其他人的相对速度,他就能准确算出其他人该赋予同一事件的时间和位置。 现在我们正是用这种方法来准确地测量距离,因为我们可以比测量长度更为准确地测量时间。实际上,米是被定义为光在以铂原子钟测量的O. 3335640952秒内走过的距离(取这个特别的数字的原因是,因为它对应于历史上的米的定义--按照保存在巴黎的特定铂棒上的两个刻度之间的距离)。同样,我们可以用叫做光秒的更方便更新的长度单位,这就是简单地定义为光在一秒走过的距离。现在,我们在相对论中按照时间和光速来定义距离,这样每个观察者都自动地测量出同样的光速(按照定义为每0.3335640952秒之1米)。没有必要引入以太的观念,正如麦克尔逊--莫雷实验显示的那样,以太的存在是无论如何检测不到的。然而,相对论迫使我们从根本上改变了对时间和空间的观念。我们必须接受的观念是:时间不能完全脱离和独立于空间,而必须和空间结合在一起形成所谓的空间--时间的客体。 我们通常的经验是可以用三个数或座标去描述空间中的一点的位置。譬如,人们可以说屋子里的一点是离开一堵墙7英尺,离开另一堵墙3英尺,并且比地面高5英尺。人们也可以用一定的纬度、经度和海拔来指定该点。人们可以自由地选用任何三个合适的坐标,虽然它们只在有限的范围内有效。人们不是按照在伦敦皮卡迪里圆环以北和以西多少英哩以及高于海平面多少英尺来指明月亮的位置,而是用离开太阳、离开行星轨道面的距离以及月亮与太阳的连线和太阳与临近的一个恒星--例如α-半人马座--连线之夹角来描述之。甚至这些座标对于描写太阳在我们星系中的位置,或我们星系在局部星系群中的位置也没有太多用处。事实上,人们可以用一族互相交迭的坐标碎片来描写整个宇宙。在每一碎片中,人们可用不同的三个座标的集合来指明点的位置。图2.2 一个事件是发生于特定时刻和空间中特定的一点的某种东西。这样,人们可以用四个数或座标来确定它,并且座标系的选择是任意的;人们可以用任何定义好的空间座标和一个任意的时间测量。在相对论中,时间和空间座标没有真正的差别,犹如任何两个空间座标没有真正的差别一样。譬如可以选择一族新的座标,使得第一个空间座标是旧的第一和第二空间座标的组合。例如,测量地球上一点位置不用在伦敦皮卡迪里圆环以北和以西的哩数,而是用在它的东北和西北的哩数。类似地,人们在相对论中可以用新的时间座标,它是旧的时间(以秒作单位)加上往北离开皮卡迪里的距离(以光秒为单位)。图2.3 将一个事件的四座标作为在所谓的空间--时间的四维空间中指定其位置的手段经常是有助的。对我来说,摹想三维空间已经足够困难!然而很容易画出二维空间图,例如地球的表面。(地球的表面是两维的,因为它上面的点的位置可以用两个座标,例如纬度和经度来确定。)通常我将使用二维图,向上增加的方向是时间,水平方向是其中的一个空间座标。不管另外两个空间座标,或者有时用透视法将其中一个表示出来。(这些被称为空间--时间图,如图2.1所示。)例如,在图2.2中时间是向上的,并以年作单位,而沿着从太阳到α-半人马座连线的距离在水平方向上以英哩来测量。太阳和α-半人马座通过空间--时间的途径是由图中的左边和右边的垂直线来表示。从太阳发出的光线沿着对角线走,并且要花4年的时间才能从太阳走到α-半人马座。 正如我们已经看到的,马克斯韦方程预言,不管光源的速度如何,光速应该是一样的,这已被精密的测量所证实。这样,如果有一个光脉冲从一特定的空间的点在一特定的时刻发出,在时间的进程中,它就会以光球面的形式发散开来,而光球面的形状和大小与源的速度无关。在百万分之一秒后,光就散开成一个半径为300米的球面;百万分之二秒后,半径变成600米;等等。这正如同将一块石头扔到池塘里,水表面的涟漪向四周散开一样,涟漪以圆周的形式散开并越变越大。如果将三维模型设想为包括二维的池塘水面和一维时间,这些扩大的水波的圆圈就画出一个圆锥,其顶点即为石头击到水面的地方和时间(图2.3)。类似地,从一个事件散开的光在四维的空间--时间里形成了一个三维的圆锥,这个圆锥称为事件的未来光锥。以同样的方法可以画出另一个称之为过去光锥的圆锥,它表示所有可以用一光脉冲传播到该事件的事件的集合(图2.4)。图2.4 一个事件P的过去和将来光锥将空间--时间分成三个区域(图2.5):这事件的绝对将来是P的将来光锥的内部区域,这是所有可能被发生在P的事件影响的事件的集合。从P出发的信号不能传到P光锥之外的事件去,因为没有东西比光走得更快,所以它们不会被P发生的事情所影响。过去光锥内部区域的点是P的绝对过去,它是所有这样的事件的集合,从该事件发出的以等于或低于光速的速度传播的信号可到达P。所以,这是可能影响事件P的所有事件的集合。如果人们知道过去某一特定时刻在事件P的过去光锥内发生的一切,即能预言在P将会发生什么。空间--时间的其余部分即是除P的将来和过去光锥之外的所有事件的集合。这一部分的事件既不受P的影响,也不能影响P。例如,假定太阳就在此刻停止发光,它不会对此刻的地球发生影响,因为地球的此刻是在太阳熄灭这一事件的光锥之外(图2.6)。我们只能在8分钟之后才知道这一事件,这是光从太阳到达我们所花的时间。只有到那时候,地球上的事件才在太阳熄灭这一事件的将来光锥之内。同理,我们也不知道这一时刻发生在宇宙中更远地方的事:我们看到的从很远星系来的光是在几百万年之前发出的,在我们看到的最远的物体的情况下,光是在80亿年前发出的。这样当我们看宇宙时,我们是在看它的过去。 图2.6 如果人们忽略引力效应,正如1905年爱因斯坦和彭加勒所做的那样,人们就得到了称为狭义相对论的理论。对于空间--时间中的每一事件我们都可以做一个光锥(所有从该事件发出的光的可能轨迹的集合),由于在每一事件处在任一方向的光的速度都一样,所以所有光锥都是全等的,并朝着同一方向。这理论又告诉我们,没有东西走得比光更快。这意味着,通过空间和时间的任何物体的轨迹必须由一根落在它上面的每一事件的光锥之内的线来表示(图2.7)。 图2.7 狭义相对论非常成功地解释了如下事实:对所有观察者而言,光速都是一样的(正如麦克尔逊--莫雷实验所展示的那样),并成功地描述了当物体以接近于光速运动时的行为。然而,它和牛顿引力理论不相协调。牛顿理论说,物体之间的吸引力依赖于它们之间的距离。这意味着,如果我们移动一个物体,另一物体所受的力就会立即改变。或换言之,引力效应必须以无限速度来传递,而不像狭义相对论所要求的那样,只能以等于或低于光速的速度来传递。爱因斯坦在1908年至1914年之间进行了多次不成功的尝试,企图去找一个和狭义相对论相协调的引力理论。1915年,他终于提出了今天我们称之为广义相对论的理论。 爱因斯坦提出了革命性的思想,即引力不像其他种类的力,而只不过是空间--时间不是平坦的这一事实的后果。正如早先他假定的那样,空间--时间是由于在它中间的质量和能量的分布而变弯曲或"翘曲"的。像地球这样的物体并非由于称为引力的力使之沿着弯曲轨道运动,而是它沿着弯曲空间中最接近于直线的称之为测地线的轨迹运动。一根测地线是两邻近点之间最短(或最长)的路径。例如,地球的表面是一弯曲的二维空间。地球上的测地线称为大圆,是两点之间最近的路(图2.8)。由于测地线是两个机场之间的最短程,这正是领航员叫飞行员飞行的航线。在广义相对论中,物体总是沿着四维空间--时间的直线走。尽管如此,在我们的三维空间看起来它是沿着弯曲的途径(这正如同看一架在非常多山的地面上空飞行的飞机。虽然它沿着三维空间的直线飞,在二维的地面上它的影子却是沿着一条弯曲的路径)。图2.8 太阳的质量引起空间--时间的弯曲,使得在四维的空间--时间中地球虽然沿着直线的轨迹,它却让我们在三维空间中看起来是沿着一个圆周运动。事实上,广义相对论预言的行星轨道几乎和牛顿引力理论所预言的完全一致。然而,对于水星,这颗离太阳最近、受到引力效应最强、并具有被拉得相当长的轨道的行星,广义相对论预言其轨道椭圆的长轴绕着太阳以大约每1万年1度的速率进动。这个效应虽然小,但在1915年前即被人们注意到了,并被作为爱因斯坦理论的第一个验证。近年来,其他行星的和牛顿理论预言的甚至更小的轨道偏差也已被雷达测量到,并且发现和广义相对论的预言相符。 光线也必须沿着空间--时间的测地线走。空间是弯曲的事实又一次意味着,在空间中光线看起来不是沿着直线走。这样,广义相对论预言光线必须被引力场所折弯。譬如,理论预言,由于太阳的质量的缘故,太阳近处的点的光锥会向内稍微偏折。这表明,从远处恒星发出的刚好通过太阳附近的光线会被折弯很小的角度,对于地球上的观察者而言,这恒星显得是位于不同的位置(图2.9)。当然,如果从恒星来的光线总是在靠太阳很近的地方穿过,则我们无从知道这光线是被偏折了,还是这恒星实际上就是在我们所看到的地方。然而,当地球绕着太阳公转,不同的恒星从太阳后面通过,并且它们的光线被偏折。所以,相对于其他恒星而言,它们改变了表观的位置。图2.9 在正常情况下,去观察到这个效应是非常困难的,这是由于太阳的光线使得人们不可能观看天空上出现在太阳附近的恒星。然而,在日食时就可能观察到,这时太阳的光线被月亮遮住了。由于第一次世界大战正在进行,爱因斯坦的光偏折的预言不可能在1915年立即得到验证。直到1919年,一个英国的探险队从西非观测日食,指出光线确实像理论所预言的那样被太阳所偏折。这次德国人的理论为英国人所证明被欢呼为战后两国和好的伟大行动。具有讽刺意味的是,后来人们检查这回探险所拍的照片,发现其误差和所企图测量的效应同样大。他们的测量纯属是运气,或是已知他们所要得的结果的情形,这在科学上是普遍发生的。然而,光偏折被后来的许多次观测准确地证实。 另一广义相对论的预言是,在像地球这样的大质量的物体附近,时间显得流逝得更慢一些。这是因为光能量和它的频率(每秒钟里光振动的次数)有一关系:能量越大,则频率越高。当光从地球的引力场往上走,它失去能量,因而其频率下降(这表明两个波峰之间的时间间隔变大)。从在上面的某个人来看,下面发生的每一件事情都显得需要更长的时间。利用一对安装在一个水塔的顶上和底下的非常准确的钟,这个预言在1962年被验证到。发现底下的那只更接近地球的钟走得更慢些,这和广义相对论完全一致。地球上的不同高度的钟的速度不同,这在目前具有相当的实用上的重要性,这是因为人们要用卫星发出的信号来作非常精确的导航。如果人们对广义相对论的预言无知,所计算的位置将会错几英哩! 牛顿运动定律使空间中绝对位置的观念告终。而相对论摆脱了绝对时间。考虑一对双生子,假定其中一个孩子去山顶上生活,而另一个留在海平面,第一个将比第二个老得快。这样,如果他们再次相会,一个会比另一个更老。在这种情形下,年纪的差别非常小。但是,如果有一个孩子在以近于光速运动的空间飞船中作长途旅行,这种差别就会大得多。当他回来时,他会比留在地球上另一个人年轻得多。这即是被称为双生子的佯谬。但是,只是对于头脑中仍有绝对时间观念的人而言,这才是佯谬。在相对论中并没有一个唯一的绝对时间,相反地,每个人都有他自己的时间测度,这依赖于他在何处并如何运动。 1915年之前,空间和时间被认为是事件在其中发生的固定舞台,而它们不受在其中发生的事件的影响。即便在狭义相对论中,这也是对的。物体运动,力相互吸引并排斥,但时间和空间则完全不受影响地延伸着。空间和时间很自然地被认为无限地向前延伸。 然而在广义相对论中,情况则相当不同。这时,空间和时间变成为动力量:当一个物体运动时,或一个力起作用时,它影响了空间和时间的曲率;反过来,空间--时间的结构影响了物体运动和力作用的方式。空间和时间不仅去影响、而且被发生在宇宙中的每一件事所影响。正如一个人不用空间和时间的概念不能谈宇宙的事件一样,同样在广义相对论中,在宇宙界限之外讲空间和时间是没有意义的。 在以后的几十年中,对空间和时间的新的理解是对我们的宇宙观的变革。古老的关于基本上不变的、已经存在并将继续存在无限久的宇宙的观念,已为运动的、膨胀的并且看来是从一个有限的过去开始并将在有限的将来终结的宇宙的观念所取代。这个变革正是下一章 的内容。几年之后又正是我研究理论物理的起始点。罗杰·彭罗斯和我指出,从爱因斯坦广义相对论可推断出,宇宙必须有个开端,并可能有个终结。 □ 版权所有——史蒂芬·霍金 我同意上面那位同志讲的,理论上可以。但是我个人认为简直就不可能!

9、台湾海峡隧道的工程设计

(一)主线A)台海通道中主线泉州—台中彰化桥隧设计方案,通行2-4线铁路,时速200公里以上,分成五段:1、从崇武至西桥隧连接岛的西段桥梁,长度13.2km,水深0-38m,预计基岩为不太深的花岗岩,留一个近岸航道供附近港口通航,桥型选择上,在航道上建一跨斜拉桥或悬索桥,其余部分采用梁桥、拱桥、钢构等桥型,难度小、风险低、造价少、工期短,预计造价40-130亿元。2、西桥隧连接岛,长度3km,水深38-40m,估计基岩为花岗岩,可先采用钢板桩或混凝土板桩进行围堰,抽水干场后,在围堰内进行隧道掘进施工,并以2%的坡度实现路面从+5m标高桥面到-55m标高隧道的过渡,隧道掘进挖出的渣料可就地用以填筑人工岛,人工岛筑成后可作为通道运行的一个中继站及隧道通风口,预计本段造价3-30亿。3、海底隧道段,为整个工程的关键性控制性工程,长度46.6km,水深40-77m,除了从两端桥隧人工岛相向掘进外,可在中点再建一座人工岛,把整个隧道分为各长23.3km的两段,本处水深65m,可先筑造一个直径二三百米的大圆筒围堰,水抽干后再挖竖井至隧道线位上,然后分别向两侧挖掘隧道,挖出的渣料就地抛填于围堰内用以填筑人工岛。本人工岛在施工期间可作为隧道的掘进基地和通风口,使得隧道平均掘进长度缩短到11.65km,在竣工运行后,则作为隧道的通风口和应急中继站。预计本段隧道造价为1400-1800亿元 。B)泉州—台中彰化全线架桥和人工岛方案,可以在见两个至三个人工岛,桥梁可以设计建造两层,底层为铁路,两线货运,两线客运,客运线可以设计350公里时速的高铁。上层设计为八车道高速公路,这个方案也是很理想的。该方案是一桥两用,铁路有四线,客货分开,效益非常高。大陆和台湾往来开车一个半钟头就可以跨越海峡到对岸很方便。客运可以连接台湾的新干线,货运可以连接台湾的物流中心。本段海底隧道长度与英法海底隧道,或日本青函海底隧道,或渤海海峡南桥北隧方案中的隧道的长度相当。英法海底隧道:总长51km,其中海底部分38km,耗资100亿英镑(约150亿美元),包括三条平行隧道,其中两条铁路隧洞直径7.6m,各通行一线铁路,一条服务隧道直径4.8m,掘进机法施工,历时8年多。跟平潭-新竹线相比,本线虽然跨海线路较长,为175.4km,比北线的128km长40km,但是,本线水浅优势非常明显,从而带来几点好处:1、使得作为关键性控制性工程的海底隧道大大缩短,以40米水深为界,北线隧道长达106.3km,中南线隧道长仅46.6km,相差达59.7km!这就带来了难度、风险、造价、工期的极大压缩,对今后通道运行也有好处。就造价而言,中南线比北线估计可节省约1500亿元。2、在隧道部分,北线水深为40-87m,中南线水深为40-77m,北线平均水深和最大水深都比中南线大近10米,这就造成了勘察难度和风险增大,海底水压也增大,以致施工风险大增。3、中南线可在中点位置上建一座中继人工岛,将整个隧道分成各长23.3km的两段,人工岛水深65m,这在不久后技术上是完全可以实施的,而北线至少要建设三座中继人工岛,把隧道分成平均26.575km的四段,三岛水深51m、61m、76m,水深七八十米在施工技术上还很遥远。(二)澎湖支线中南线的另一大优点是提供了连接澎湖、金门的最可行途径。澎湖支线设计通行单线铁路,时速160公里以上,桥隧方案也分五段:1、从澎北主线上引出两条匝道至北桥隧连接岛,长度各约3km,水深约16m,转弯半径约2000m。2、北桥隧连接岛,长度3km,水深16-40m,路面坡度2%。3、海底隧道,长度27.3km,水深40-83m。4、南桥隧连接岛,长度3km,水深0-40m,利用澎湖北部目斗屿等岛屿礁滩。5、从桥隧连接岛到吉贝岛的桥梁,长度7.5km,水深很浅。由于通航要求较低,也可考虑全桥方案,这需要绕开深水区。(三)金门支线,只需在泉厦交界处附近,从福厦铁路、沿海客专、沿海货专引支线通往金门即可。

10、隧道360米,进入隧道用了八秒钟,出隧道用了20秒钟。求这列火车长多少米?

也就是说从火车头部刚进入隧道开始计时 到火车尾出隧道 一共用时28秒那么假设速度是v 火车长度是L28v=(360+L)L=8v代入得28v=360+8v360=20vv=18所以L=8×18=144米这列火车长144米

材料结算价直辖市材料结算价广西自治区材料结算价
文章字数:17864
点击数:6314
[ 打印当前页 ]