建设工程行业资讯新闻列表 人工客服公众号
建设工程资讯新闻
新闻时间:2020-04-14,来源:建筑培训,作者:

粒子加速器造价

1、中国有粒子加速器吗?造价是多少?

有,但是造价没有对外公布。

北京正负电子对撞机

北京正负电子对撞击 北京正负电子对撞机是一台可以使正、负两个电子束在同一个环里沿着相反的方向加速,并在指定的地点发生对头碰撞的高能物理实验装置。由于磁场的作用,正负电子进人环后,在电子计算机控制下,沿指定轨道运动,在环内指定区域产生对撞,从而发生高能反应。然后用一台大型粒了探测器,分辨对撞后产生的带电粒千及其衍变产物,把取出的电子信号输人计算机进行处理。它始建于1984年10月7日,1988年10月建成,包括正负电子对撞机、北京谱仪(大型粒子探测器)和北京同步辐射装置。

北京正负电子对撞机的建成,为我国粒子物理和同步辐射应用研究开辟了广阔的前景。它的主要性能指标达到80年代国际先进水平,一些性能指标迄今仍然是国际同类装置的最好水平。

兰州重离子加速器

兰州重离子加速器 兰州重离子加速器是我国自行研制的第一台重离子加速器,同时也是我国到目前为止能量最高、可加速的粒子种类最多、规模最大的重离子加速器,是世界上继法国、日本之后的第三台同类大型回旋加速器,1989年H月投入正式运行,主要指标达到国际先进水平。中科院近代物理研究所的科研人员以创新的物理思想,利用这台加速器成功地合成和研究了10余种新核素。

合肥同步辐射装置

合肥国家同步辐射实验室直线加速器 合肥同步辐射装置主要研究粒子加速器后光谱的结构和变化,从而推知这些粒子的基本性质。它始建于1984年4月,1989年4月26日正式建成,迄今已建成5个实验站,接待了大量国内外用户,取得了一批有价值的成果。

中国科学技术大学同步辐射加速器实验室1989年4月提前建成并调试出束。

2、为什么我国拥有国际先进的治癌技术却只可以在兰州建立一个点?

因为重离子治癌是需要重离子加速器这种大科学装置的~~兰州重离子加速器及冷却储存环是一个超大型的科学装置,该装置不仅可以实现重离子治癌,还在核物理等方面有很大的作用,总造价在5亿人民币以上,是全国现在建成的四个国家实验室之一。不能说某个地方为了治疗癌症就建立一个重离子加速器吧,只能是依托在右重离子加速器的地方来做重离子治癌。我就是兰州近代物理研究所的。

3、加速器的对撞机

自世界上建造第一台加速器以来,七十多年中加速器的能量大致提高了9个数量级(参见左图),同时每单位能量的造价降低了约4个数量级,如此惊人的发展速度在所有的科学领域都是少见的。随着加速器能量的不断提高,人类对微观物质世界的认识逐步深入,粒子物理研究取得了巨大的成就。用人工的办法加速带电粒子,使其获得很高速度的装置.加速器利用一定形态的电磁场将电子、质子或重离子等带电粒子加速,使其具有高达几千、几万乃至近光速的高速带电粒子束,是人们认识原子核和探讨基本粒子,对物质深层结构进行研究的重要工具,同时随着加速器技术的不断发展,各种新的技术、新的原理不断更新,不断突破,进一步促进新技术的向前推进.加速器的研究和发展同时带来在工农业生产、医疗卫生、国防建设等各方面的重要而广泛的应用.早在20世纪20年代,科学家们就探讨过许多加速带电粒子的方案,并进行过多次实验.其中最早提出加速原理的是E·维德罗.30年代初高压倍加器、静电加速器、回旋加速器相继问世,研制者分别获得这一时期的诺贝尔物理学奖.这以后随着人们对微观物质世界深层次结构的研究的不断深入,各个科学技术领域对各种快速粒子束的需求不断增长,提出了多种新的加速原理和方法,发展了具有各种特色的加速器.其中有电子感应加速器、直线加速器、强聚焦高能加速器、扇形聚焦回旋加速器.1956年克斯特提出通过高能粒子束间的对撞来提高有效作用能的概念,导致了高能对撞机的发展.几十年来,人们利用加速器发现了绝大部分新的超铀元素和合成上千种新的人工放射性核素,并对原子核的基本结构和其变化规律进行了系统深入的研究,促使了原子核物理学的发展和成熟,并建立新的粒子物理学科,近20年来,加速器的发展的应用使材料科学、表面物理学、分子生物学、光化学都有重要发展.中国加速器的发展始于50年代末期,先后研制和生产了高压倍加器、静电加速器、电子感应加速器、电子和质子直线加速器、回旋加速器.数年来更加先进的加速器在中国又取得重大进展,北京已建成正负电子对撞机,使中国加速器研制和应用进入了世界先进行列.

4、微观粒子这一中讲电子带负电,质子带正电,请问正,负电有什么联系,区别。

原子内有电子核原子核,核外是电子,原子核内部是质子核中子,中子没电。电子在核外做高速圆周运动,主要是受到库仑力的作用。 加速器:主要就是回旋加速器核直线型加速器(他们是靠电场和磁场工作的),回旋加速器的制作有一定的规格,(不知道你们初二学到没有)回旋加速器首先是要靠电和磁工作的,并且还是交流电,说到交流电,它有一定的频率,我国的是50赫兹,电子或其他微粒在加速器中加速并作圆周运动,速度逐渐增加,其运动形式就像“真知棒棒糖”上的螺旋。另外一种是直线型的加速器,它工作电源是直流,带点的微粒在电场和磁场中受到电场力和洛伦兹力的作用开始加速运动,就是这样被加速的。 但是回旋加速器不能无限的加速带电微粒,因为当微粒的速度接近光速时,它的周期、质量会发生变化(相对论)。希望对你有帮助,其他不再多说,高中你们应该会深入学习!

5、粒子加速器在原子世界有着哪些作用?

世界就是这样矛盾和奇妙,打破越小的东西往往需要越大的能量。要想把肉眼看不到的细小微粒——原子打破,把一个质子或中子从原子核中分离出来,需要用具有800万电子伏能量的粒子去轰击原子核才能奏效。有的粒子,要想从核内打出来,甚至需用上亿电子伏的粒子做“炮弹”,真可谓名符其实的攻坚战。

怎样才能获得具有高能量的粒子呢?这就要靠高效率的仪器和设备。粒子加速器就是一种能够产生很大能量的粒子“炮弹”的大型机器。它可以使带电粒子获得极大的速度,因而具有极大的动能,而且能够密集地接连不断地发射出来,去轰击要研究的原子,把原子打破,使人们得到所需要的基本粒子。因此,科学家们把它称为“粒子炮”。

自然界虽然也有一些放射性的物质,可以作为轰击原子的炮弹,但是人们难以对它们进行控制,而且这些天然物质放射出的粒子能量都不够高,所以轰击的效率比较低。1919年卢瑟福用天然放射性镭发出的a粒子去轰击氮原子,得到了氧和氢,但是这次实验用了几个星期的时间。

科学工作者渴望有一种能够加大粒子速度,提高粒子能量的机器,来探索原子的奥秘,征服原子世界。为此,许多科学家进行了长期的艰苦的努力。

1928年,英国物理学家科克罗夫特和沃尔顿建造了最初的粒子加速器——电压倍加器。他们利用这台能把质子加速到40万电子伏能量的装置,击碎了锂的原子核,为此获得了1951年的诺贝尔物理奖。

与此同时,美国物理学家范德格拉夫也设计了一种静电加速器。它的高压电极是半球状的金属筒,由绝缘柱高高支起,电极里产生的粒子经强电场加速可到24000万电子伏。

这两种加速器都是一次加速,能不能让粒子在机器中受到多次加速,从而提高它的能量呢?1938年科学家维德罗用交变电场作为驱动力,使粒子在分段的管道中,每经过一段管道受到一次推动,建成了第一台加速离子的直线加速器。这种加速器大大提高了被加速粒子的能量,但缺点是管道长,而且没有充分利用。像美国斯坦福直线加速器中心的一台机器,加速管长达3公里,可想而知,整台机器是多么庞大。

那么,能不能把管道做成一个圆圈状,使粒子在圆圈中周而复始地加速?第一个实现这种想法的是被称为“加速器之父”的美国物理学家劳伦斯。他于1931年制成了第一台回旋加速器。这台加速器直径不过0.3米,但能使粒子加速到125万电子伏。

随着人们对粒子能量不断加大的要求,回旋加速器也从最初的“苗条”渐渐巨大起来。1951年,芝加哥大学内的回旋加速器,磁体就重2200吨,它由一个钢芯和缠绕它的铜线组成。铜线由直径为1英寸的铜管做成,总长度约7公里,仅磁体就有一间房那么大。1967年,前苏联建成一台能产生700亿电子伏能量粒子的加速器,直径超过1500米。美国的一台质子同步回旋加速器直径为2公里,可把质子加速到5000亿电子伏。加速器已经成为一个能量和体积都十分可观的“巨人”。

从本世纪60年代起,科学家们开始研制使粒子和要轰击的原子都动起来的对撞机。这种碰撞无疑比运动的粒子撞击静止的原子要产生更大的能量。70年代后,对撞机已成为世界研制加速器的主要趋势。

西欧核子研究中心的质子——反质子对撞机,能量可达5400亿电子伏特。我国科学院高能物理研究所研制的北京正负电子对撞机,已于1988年开始运行。美国计划建一台20万亿电子伏的对撞机,其工程可同挖凿巴拿马运河相比。

加速器从诞生以来,在半个多世纪的时间里,帮助人们发现了300多种基本粒子。这尊强大的“粒子炮”,轰开了原子世界的大门,为人们洞察微观世界立下了汗马功劳。

6、未分化癌可以用重离子加速器治疗吗

因为重离子治癌是需要重离子加速器这种大科学装置的~~兰州重离子加速器及冷却储存环是一个超大型的科学装置,该装置不仅可以实现重离子治癌,还在核物理等方面有很大的作用,总造价在5亿人民币以上,是全国现在建成的四个国家实验室之一。不能说某个地方为了治疗癌症就建立一个重离子加速器吧,只能是依托在右重离子加速器的地方来做重离子治癌。我就是兰州近代物理研究所的。

7、粒子对撞机在哪里?要图。是什么原理?

在高能同步加速器基础上发展起来的一种装置,其主要作用是积累并加速相继由前级加速器注入的两束粒子流,到一定束流强度及一定能量时使其在相向运动状态下进行对撞,以产生足够高的相互作用反应率,便于测量。 用高能粒子轰击静止靶(粒子)时,只有质心系中的能量才是粒子相互作用的有效能量,它只占实验室系中粒子总能量的一部分。如果射到靶上的粒子能量为 E,则对靶中同种粒子作用的质心系能量约为 (E为粒子的静止能量)。可见,随着E的增高,用于相互作用的那部分能量所占的比例将越来越小,即被加速粒子能量的利用效率越来越低,但是,如果是两个能量为 E的相向运动的同种高能粒子束对撞,则质心系能量约为2E,即粒子全部能量均可用来进行相互作用。可见,为了得到相同的质心系能量,所需的加速器能量将比对撞机大得多。如果对撞机能量为 E,则相应的加速器能量应为2E2/E。例如,能量为 2×300GeV的质子、质子对撞机,同一台能量为 180000GeV的质子加速器相当,建造这样高能量的加速器。在目前的技术水平及经济条件仍然是不可及的。但建造上述能量或更高一些能量的对撞机是完全可行的,这就是近20年来对撞机得到广泛发展的原因之一。 对撞机的主要指标除能量外还有亮度。所谓对撞机的亮度是指该对撞机中所发生的相互作用反应率除以该相互作用的反应截面。显然亮度越高对撞机的性能就越好,1986年时对撞机达到的亮度约在1029~1032cm-2·s-1。 20世纪50年代初,加速器的设计者就有过利用对撞束来获得更高质心系能量的设想,但是鉴于加速器中束流的强度太低,束流密度远低于靶的粒子密度,双束对撞引起的相互作用反应率将比束流轰击固定靶时发生的反应率低106倍,这样,很难进行最低限度的测量,这种设想就没有得到应有的重视,1956年人们开始懂得依靠积累技术,可以获得必要强度的束流,从而使对撞机的研究真正被提到日程上来。 正负电子对撞机的造价低,技术简单,因此它是首先研究的对象。最初的两台对撞机是1961年投入运行的,不久又相继出现了好几台低能量的电子对撞机。B.里希特就是在美国斯坦福直线加速器中心的正负电子对撞机SPEAR上发现著名的 J/ψ粒子的(同时在美国布鲁克海文国家实验室由丁肇中教授发现),为近代高能物理的发展作出了很大的贡献,正是由于这一成就为后来人们下决心建造更大的正负电子对撞机起了决定性的作用。 目前建成的质子对撞机如欧洲核子中心代号 ISR的交叉储存环,其能量为2×31GeV,它于1971年已投入运行。 由于电子冷却及随机冷却技术(见加速器技术和原理的发展)的成功,使反质子束的性能大大得到改善,而且束流可以积累到足够的强度,从而有可能在同一环中进行质子-反质子对撞。欧洲核子中心于1981年将一台能量为 400GeV的质子同步加速器(即SPS)改建成质子-反质子对撞机,并于1983年取得了极其重要的实验成果,发现了W±、Z0粒子。 对撞机特点 与同步加速器极为相似,对撞机呈环形,沿环安放着磁铁系统、高频系统、真空系统以及探测和校正系统等。此外,它沿圆环还有两个或两个以上专供对撞用的特殊长直线节,探测仪器就被安置在长直线节内的对撞点附近的空间中。使电荷相反,静止质量相同的两束粒子相碰比较简单,只要建立一个环就行了如果是电荷相同的同种粒子相撞,就必须要建立两个环。两个环的外加磁场方向相反。这两个环可以建在同一平面中,使其在几个交叉的地方进行对撞;也可以建立在上下两个不同平面中,用特殊的电磁场使两种粒子在长直线节内相撞,此外,高能量的对撞机还需要用一台高能加速器(一般用同步加速器或直线加速器)作为注入器,先把粒子加速到一定能量,再注入到对撞机中去进行积累,进一步加速及对撞。积累、加速及对撞是对撞机的三大机能,所谓积累是设法把高能加速器在不同时间加速出来的脉冲粒子束团积累在对撞机环形真空室(称为储存环)中。一般需要积累几十或上千个束团,才能达到对撞所需的强度。电子同步加速器的束流团的积累是依靠同步辐射来完成的,同步辐射虽然使同步加速器的能量难于进一步提高,但却使得电子束的横向及纵向的尺寸在加速过程中大大收缩,即密度大大提高,利用这一特性就可以积累一股很强的电子束流。质子却没有这种特性,这就需要用动量积累过程来得到强流质子束。积累以后,对撞机还可以将注入其中的高能粒子进一步加速到更高的能量,对撞机的这一作用与普通的同步加速器完全一样,粒子的能量是由安置在圆环上的高频加速腔供给的,在整个加速过程中,对撞机的磁场逐渐上升,高频腔的频率也被严格控制得与被加速粒子的回旋频率一样或成整数倍,从而使粒子不断地被加速到更高能量。当粒子被加速到预定能量后,对撞机的磁场就被维持在相应的恒定值上,粒子束就在环形真空室中不断地回旋,两束并在对撞区域内某点发生对撞。这时布置在对撞区周围的测量仪器,就可对碰撞时发生的事例不断地进行测量,剩下的没有起反应的粒子将继续在环里回旋运动,等到下一次到达对撞区时再度发生对撞。一直到束流的强度降低到不能再作物理实验为止,这时两股束流的寿命也就中止了。束流的寿命一般可达几小时或几十小时,所以作为注入器的高能加速器只有在积累过程中才把粒子束流提供给对撞机,而在对撞的过程中,还可供轰击静止靶的物理实验用。为了增加对撞的几率(即提高对撞机的亮度),70年代初期,出现了在对撞区中插入一种特殊的称为低包络插入节的聚焦结构,使束流在对撞点的横截面受到强烈的压缩,从而使对撞点的束流密度大大增加。由于采用了这种结构,使70年代建造的对撞机的亮度比以前提高了一两个数量级。另外,为了尽可能的延长束流的寿命,对撞机环内的真空度平均不得低于 10-8~10-9 Torr,尤其是在对撞区附近。为了减少物理实验的本底,即为了保证使束流与束流发生对撞的几率大大超过束流与残余气体相撞的几率,真空度应维持在10-10~10-11Torr左右。所以大体积高真空这一技术也随着对撞机的发展而发展起来了。 至于几种对撞机,同2楼其实在百度图片中搜“粒子对撞机”就有好多

8、超强超短激光,到底是啥东西

近日,“中科院上海光机所利用超强超短激光成功产生反物质”这则新闻广为传播。这是国内首次报道利用激光产生反物质。不过,很多网友在被“反物质”一词吸引的同时,却忽略了背后另一个更重大且更有意义的成就——中国在“超强超短激光”上的一些突破。 什么是超强超短激光? 不少人第一眼看到“超强超短”会对其发生误解。超强很好理解,而超短,不少人容易把其理解为“距离上的长短”,但实际上,这里的“短”是时间上的长短。 大功率激光是各国梦寐以求的,因为,它能干的事实在是太多,比如军事爱好者们所熟知的激光武器,还有制造人工可控核聚变所需条件等等。 耗资数十亿美元的美国“国家点火装置”中使用的燃料球,他们使用192门激光在十亿分之一秒的时间内同时发射并击中铅笔头大小的燃料球,从而引发核聚变。 然而,大功率激光并非那么容易产生,并不是说给一个激光设备提供的能量越大,激光的功率就会越大。显然,单纯地提供大能量以进一步提高激光的功率现在已经变得很难,造价也越发昂贵。 怎么办? 我们知道:功率=功/时间=w/t 既然在“功”上突破已经很昂贵且很难,那么,我们就从“时间”上来突破。 显而易见,相同的功,做功时间越短,功率就会越大。当时间趋于无穷小时,功率就会趋于无穷大。 1瓦特(功率)=1焦耳/1秒。 对于1焦耳的能量来说,如果我们把激光的脉冲时间从1秒缩短到0.1秒,那么我们就得到了10瓦的功率。 如果从1秒缩短0.001秒,我们就得到了1000瓦的功率。 同理,如果缩小到1皮秒呢?那么我们就得到了1,000,000,000,000瓦的功率(1万亿瓦)。 对于普通大众来说,1万亿瓦的功率其实已经大到了不可思议。然而,我国造出的超短激光脉冲,在时间尺度上是飞秒级别,其功率比上面的1万亿瓦还要多3个0,达到了1000万亿瓦的级别。 相信,研究激光的业内人士每天说“飞秒”、“阿秒”的次数绝对比很多人每天说“秒”的次数还要多,为此,我们先用一张表格来温故一下时间的量级: 我国造出的激光脉冲,在时间上短到飞秒级别,对应的激光也称为“飞秒激光”。1000万亿瓦等于1拍瓦(PW,105W),中科院上海光学精密机械研究所(以下简称上海光机所)的激光设备,其功率达到了5拍瓦。 它能产生很多极端条件 超强超短激光功率如此的大,以至于,它能产生很多极端条件,而这些条件只有在恒星内部或是黑洞边缘才能产生。 一、超强的光强 目前,超强超短激光所能获得的最高光强为1022瓦/平方厘米。这是一个多大的光强呢?如果我们把地球上接收到的太阳总辐射同时聚焦在一根头发丝粗细的尺度上,获得的光强也只有1021瓦/平方厘米。 二、超高的能量密度 超强超短激光目前可以达到 3×1010 焦耳/立方厘米,这相当于是在1立方厘米的小体积内爆炸20吨的TNT炸药。 三、超强的光压 光会产生压力,这就是光压,也叫辐射压。还在科幻中的“太阳帆”就是以此为动力。太阳产生的光压很小很小,但是超强超短激光产生的光压接近大气压的1万亿倍。 它有哪些应用? 超强超短激光产生的这些极端条件非常有用。其实,只要想一想就能明白,各国的粒子加速器,包括耗资巨大的、发现上帝粒子的欧洲大型强子对撞机,它们的目的都是为了制造出各种极端能量的粒子,迫使粒子加速并对碰,从而借此探索宇宙的奥秘。 而超强超短激光可以产生如此多的极端条件,那么其应用当然也是非常广泛的。 例如,超强超短激光能产生超强的电场,利用这个电场可以加速粒子,现在,用激光加速粒子的相关实验,无论是国际上,还是我国的上海光机所等等,都在进行。如果实验未来获得突破,那么超强超短激光将会让未来的各种直线加速器小型化,同时成本降低。 中科院上海光机所此次还制造出了反物质,也就是正电子,它有什么用? 众所周知,只有当光子从树叶上反射并进入我们的眼睛时,我们才能看到那片树叶。而很多航空航天所需要的重要材料,其被生产出来,或者使用过以后后,我们很想了解其内部的微观结构、缺陷状态等信息,但又不能破坏材料本身,怎么弄?当然得使用无损探测。 而超强超短激光可以在材料内部制造出反物质,也就是大量正电子,这些正电子与材料内部的电子发生湮灭,于是,电子的全部质量转变成电磁辐射,并以伽马光子射出,检测这些光子,我们也就间接地探测到了材料的内部情况。利用正电子湮没技术可以对材料内部进行原子尺度的缺陷和损伤进行探测。 以上,只是超强超短激光的两个应用,未来,也许我们会发现,以上只是两个小应用而已。根据上海光机所所长李儒新研究员在“2015年国际光年报告会”上的介绍,2020年,在超强超短激光领域,可能实现以下梦想:产生纳米尺度的光束并应用于显微和存储;基于激光的超精密钟用于测量宇宙基本常数。。

9、我终于刷出了粒子长矛了,可是,是不是没必要上了

去网络搜!!!如下:(很多!还不如自己在网络搜呢!) 1.一般意义上的太空 编辑本义项太空“太空”是由无极元和能量相互作用而构成的、物质的,存在时空概念并存在于宇宙内部的一个有限的,有着开始和结束的整体事件,是易学中的太极世界。太极世界里有能量、有物质、有时空和事件。太空同样也是佛教中描述的“万有”,是教中描述的“一切”。柯易《论宇宙和太空》太空资料地球大气层以外的宇宙空间,大气层空间以外的整个空间。物理学家将大气分为5层:对流层(海平面至10千米)、平流层(10~40千米)、中间层(40~80千米)、热成层(电离层,80~千米)和外大气层(电离层,千米以上)。地球上空的大气约有3/4在对流层内,97%在平流层以下,平流层的外缘是器依靠空气支持而飞行的最高限度。某些高空火箭可进入中间层。人造卫星的最低轨道在热成层内,其空气密度为地球表面的1%。在1.6万千米高度空气继续存在,甚至在10万千米高度仍有空气粒子。从严格的科学观点来说,空气空间和外层空间没有明确的界限,而是逐渐融合的。和平利用外层空间委员会科学和技术小组委员会指出,目前还不可能提出确切和持久的科学标准来划分外层空间和空气空间的界限。近年来,趋向于以人造卫星离地面的最低高 太空度(~)千米为外层空间的最低界限。领空和外层空间的划分关于领空(空气空间)和外层空间的划分问题,历来有两种对立的主张。 太空空间论主张以空间的某种高度来划分领空和外层空间的界限,以确定两种不同法律制度适用的范围。功能论认为应根据飞行器的功能来确定其所适用的法律,如果是器,则其活动为活动,应适用外空法;如果是器,则其活动为活动,应受法的管辖;整个空间是一个整体,没有划分领空和外层空间的必要。就“空间论”而言,关于确定外层空间的下部界限大致又有以下几种意见:①以器向上飞行的最高高度为限,即离地面30~40公里②以不同的空气构成为依据来划分界限。由于从地球表面至数万公里高度都有空气,因而出现以几十,几百,几千公里为界的不同主张,甚至有人认为凡发现有空气的地方均为空气空间,应属领空范围③以人造卫星离地面的最低高度(~公里)为外层空间的最低界限。在外空使用核动力源问题外空委员会科学和技术小组委员会在年研究报告的结论中称,只要充分履行有关使用核动力源的安全标准和规定,核动力源可以在外空安全使用。现在法律小组委员会正在上述研究报告的基础上审议能否在现有的国际法规范方面,补充有关在外空使用核动力源的规定问题。外层空间法和平利用外层空间委员会(简称“外空委员会”)作为永久性机构,于年成立。外空委员会设 太空立了法律和科技两个小组委员会,分别审议和研究有关的法律和科技问题。除上述年通过的宣言外,外空委员会先后草拟了5项有关外空的国际条约,即《关于各国探索和利用包括月球和其他天体在内外层空间活动的原则条约》(,简称《外层空间条约》)、《营救宇宙航行员、送回宇宙航行员和归还射入外层空间的物体的协定》()、《空间物体所造成损害的国际责任公约》()、《关于登记射入外层空间物体的公约》()和《关于各国在月球和其它天体上活动的协定》(),中国于年12月加入了《外层空间条约》。原则和规则上述条约提出了一些重要原则和规则,对外层空间法的形成起了重要作用,它们包括:外空的利用应为全人类谋利益;外空和天体供一切国家在平等基础上探测和利用;任何国家不得将外空和天体据为己有;探测和利用外空应遵守国际法和维护国际和平与安全;禁止将载有核武器或其他大规模毁灭性武器的人造卫星或器放置在地球卫星轨道和外层空间;发射国对射入外空的物体及其所载的人员具有管辖权和控制权;对紧急降落的宇航员应给以一切可能的协助,尽力予以营救和送回发射国,发现的外空物体应予归还;发射国为其外空物体对地面上或对飞行中的飞机造成的损害负有赔偿的绝对责任;发射国在切实可行范围内将所发射的外空物体和有关情报通知;各国探测和利用外层空间应进行合作和互助;在外空进行活动时,应照顾其他国家的利益;从事外层空间活动应避免使外空遭受有害的污染和使地球环境发生不利的变化;月球和其他天体应限用于和平目的,禁止各种军事利用;月球和其他天体及其自然资源为人类共同财产;公平分配这些资源带来的利益并对发展中国家和对探索作出贡献的国家给予特殊照顾,等等。在国际法上,尽管有些学者曾经提出过领空无限的主张,但由于地球的自转和公转,以及整个太阳系的运动,认为国家无限制地延伸到宇宙中去是没有实际意义的。对外空的探测和利用以及数以千计的人造卫星不断地在围绕地球的轨道上运行的事实,表明外层空间依其性质是难以成为国家控制的对象的。年大会通过的《各国在探索与利用外层空间活动的法律原则的宣言》,确定了外层空间供一切国家探测和使用,以及不得由任何国家据为己有这两条原则。和平利用外层空间委员会(简称“外空委员会”)作为永久性机构,于年成立。外空委员会设立了法律和科技两个小组委员会,分别审议和研究有关的法律和科技问题。除上述年通过的宣言外,外空委员会先后草拟了5项有关外空的国际条约,即《关于各国探索和利用包括月球和其他天体在内外层空间活动的原则条约》(,简称《外层空间条约》)、《营救宇宙航行员、送回宇宙航行员和归还射入外层空间的物体的协定》()、《空间物体所造成损害的国际责任公约》()、《关于登记射入外层空间物体的公约》()和《关于各国在月球和其它天体上活动的协定》(),中国于年12月加入了《外层空间条约》。由柳洪平与谢宇轩创建。太空武器太空武器大部分是新概念武器,主要有:利剑——激光武器:用激光作武器的设想是基于激光的高热效应。激光产生的高温可使任何金属熔化。同时激光以光速(每秒钟30万千米)直线射出,延时完全可以忽略,也没有弯曲的弹道,因此不需要提前量,简直指哪打哪。另外,激光武器没有后坐力,可以迅速转移打击目标,还可以进行单发、多发或连续射击。激光武器的本质就是利用光束输送巨大的能量,与目标的材料相互作用,产生不同的杀伤破坏效应,如烧蚀效应、激波效应、辐射效应等。正是靠着这几项神奇的本领,激光武器成为理想的太空武器。长矛———粒子束武器:它是利用粒子加速器原理出的一种新概念武器。带电粒子进入加速器后就会在强大的电场力的作用下,加速到所需要的速度。这时将粒子集束发射出去,就会产生巨大的杀伤力。粒子束武器发射出的高能粒子以接近光速的速度前进,用以拦截各种器,可在极短的时间内命中目标,且一般不需考虑射击提前量。粒子束武器将巨大的能量以狭窄的束流形式高度集中到一小块上,是一种杀伤点状目标的武器,其高能粒子和目标材料的分子发生猛烈碰撞,产生高温和热应力,使目标材料熔化、损坏。神鞭——微波武器:由能源系统、高功率微波系统和发射天线组成,主要是利用定向辐射的高功率微波波束杀伤破坏目标。微波波束武器全天候作战能力较强,有效作用距离较远,可同时杀伤几个目标。特别是微波波束武器完全有可能与雷达兼容形成一体化系统,先探测、跟踪目标,再提高功率杀伤目标,达到最佳作战效能。它犹如无形的“神鞭”,既能进行全面毁伤、横扫敌方电子设备,又能实施精确打击、直击敌方信息中枢。可以说,微波武器是现代电子战、电磁战、信息战不可或缺的基本武器。飞镖———动能武器:动能武器的原理十分简单,说白了,它和飞镖伤人的道理完全一样。一切运动的物体都具有动能。根据动力学原理,一个物体只要有一定的质量和足够大的运动速度,就具有相当的动能,就能有惊人的杀伤破坏能力,这个物体就是一件动能武器。所谓动能武器,就是能发射出超高速运动的弹头,利用弹头的巨大动能,通过直接碰撞的方式摧毁目标的武器。这里最重要的一点是动能武器不是靠、辐射等其他物理和化学能量去杀伤目标,而是靠自身巨大的动能,在与目标短暂而剧烈的碰撞中杀伤目标。所以,它是一种完全不同于常规弹头或核弹头的全新概念的新式武器。太空站 太空站太空站又称为“空间站”、“轨道站”或“站”,是可供多名宇航员巡航、工作和居住的载人器。在太空站运行期间,宇航员的替换和物资设备的补充可以由载人飞船或飞机运送,物资设备也可由无人器运送。年前苏联发射了世界上第一个太空站———“礼炮”1,此后到年又发射了“礼炮”2—7。年前苏联又发射了更大的太空站“和平”。美国年利用“阿波罗”登月计划的剩余物资发射了“天空实验室”太空站。编辑本段太空旅游太空旅游是基于人们遨游太空的理想,到太空去旅游,给人提供一种前所未有的体验,最新奇和最为人的是可以观赏太空旖旎的风光,同时还可以享受失重的味道。而这两种体验只有太空中才能享受到,可以说,此景只有天上有。太空游项目始于年4月30日。第一位太空游客为美国商人丹尼斯蒂托,第二位太空游客为南非富翁马克·沙特尔沃思,第三位太空游客为美国人格雷戈里·奥尔森。聂海胜就是其中的一位。太空环境自宇宙大以后,随着宇宙的膨胀,温度不断降低,现在,太空已成为高寒的环境,平均温度为零下.3℃。在太空中,各种天体也向外辐射电磁波,许多天体还向外辐射高能粒子,形成宇宙射线。如太阳有太阳电磁辐射,太阳宇宙线辐射和太阳风,太阳宇宙线辐射是太阳在发生耀斑爆发时向外发射的高能粒子,而太阳风则是由日冕吹出的高能等离子体流。许多天体都有磁场,磁场俘获上述高能带电粒子,形成辐射很强的辐射带,如在地球的上空,就有内外两个辐射带。由此可见,太空还是一个强辐射环境。太空还是一个高真空,微重力环境。重力仅为百分之一到十万分之一g (g-重力加速度) ,而人在地面上感受到的重力是1g。太空垃圾危害自上世纪50年代开始进军宇宙以来,人类已经发射了4千多次运载火箭。据不完全统计,太空中现有直径大于10厘米的碎片9千多个,大于1.2厘米的有数十万个,而漆片和固体推进剂尘粒等微小颗粒可能数以百万计。不要小看这些太空垃圾,由于飞行速度极快(6-7公里/秒),它们都蕴藏着巨大的杀伤力,一块10克重的太空垃圾撞上卫星,相当于两辆小汽车以公里的时速迎面相撞——卫星会在瞬间被打穿或击毁!试想,如果撞上的是载人宇宙飞船……而且人类对太空垃圾的飞行轨道无法控制,只能粗略地预测。这些垃圾就像高速公路上那些无人驾驶,随意乱开的汽车一样,你不知道它什么时候刹车,什么时候变线。它们是宇宙交通事故最大的潜在“肇事者”,对于宇航员和飞行器来说都是巨大的威胁。目前地球周围的宇宙空间还算开阔,太空垃圾在太空中发生碰撞的概率很小,但一旦撞上,就是毁灭性的。更令专家头疼的是“雪崩效应”——每一次撞击并不能让碎片互相湮灭,而是产生更多碎片,而每一个新的碎片又是一个新的碰撞危险源。如果有一天,等地球周围被这些太空垃圾挤满的时候,人类探索宇宙的道路该何去何从呢?太空垃圾是人类在进行活动时遗弃在太空的各种物体和碎片,它们如人造卫星一般按一定的轨道环绕地球飞行,形成一条危险的垃圾带。太空垃圾可分为三类:一是用现代雷达能够监视和跟踪的比较大的物体,主要有种种卫星、卫星保护罩及各种部件等,这类垃圾目前已达多个;二是体积小的物体,如发动机等在空间时产生的,其数量估计至少有几百万;三是核动力卫星及其产生的放射性碎片,到年,这类卫星送到地球轨道上的碎片达3。年10月4日,前苏联成功地发射了第一颗人造地球卫星,揭开了人类空间时代的序幕,同时也为太空送去了第一批垃圾。当时,宇航员完成飞行任务,把卫星的装载舱、备用舱、仪器设备及其他遗弃物都留在了卫星轨道上。此后,随着人类太空史上的一次次壮举,太空垃圾与日俱增。人类先后已将余颗卫星送入太空,目前仍在正常运转的仅有余颗,其余的或坠毁于地球表面,或遗留在太空,成为太空垃圾。据统计,目前约有太空垃圾在绕地球飞奔,而其数量正以每年2%—5%的速度增加。科学家们预测:太空垃圾以此速度增加,将会导致灾难性的连锁碰撞事件发生,如此下去,到年,任何东西都无法进入太空轨道了。太空垃圾给事业的发展带来了隐患,它们成为人造卫星和轨道空间站的潜在杀手,使宇航员的安全受到严重威胁。要知道,太空垃圾是以宇宙速度运行的。一颗迎面而来的直径为0.5毫米的金属微粒,足以戳穿密封的飞行服;人们肉眼无法辨别的尘埃(如油漆细屑、涂料粉末)也能使宇航员殒命;一块仅有阿司匹林药片大的残骸可将人造卫星撞成“残废”,可将造价上亿美元的器送上绝路。在人类太空史上,太空垃圾造成的事故和灾难屡见不鲜。年,美国飞机“挑战者”与一块直径0.2毫米的涂料剥离物相撞,导致舷窗被损,只好停止飞行。年,“阿丽亚娜”火箭进入轨道之后不久便,成为块10 厘米大小的残骸和块小碎片,这枚火箭的残骸使两颗日本通信卫星“命赴黄泉”!年9月15日,美国发射的“发现者”飞机差一点与前苏联的火箭残骸相撞,当时“发现者”与这个“不速之客”仅仅相距2.74千米,幸亏地球上的指挥系统及时发来警告,它才免于丧生。据计算,目前太空轨道上每个飞行物发生灾难性碰撞事件的几率为3.7%,发生非灾难性撞击事件的可能性为20%。以此计算,今后将每5—10年可能发生一次太空垃圾与器相撞事件,到年将达到2年一次。[{(资料属截取,建议自行查找)]}

10、粒子加速器怎么控制粒子对撞方向?

粒子加速器 粒子加速器利用电磁场来控制小的带电粒子的速度和方向。这些粒子被加速粒子包括电子,质子,电离原子,甚至是奇特的粒子比如正电子和反质子。最简单的粒子加速器就是我们熟悉的电视接收机。阴极射线管(CRT)使用电子枪发射高速电子,经过垂直和水平的偏转线圈控制高速电子的偏转角度,最后高速电子击打屏幕上的荧光物质使其发光,通过偏压来调节电子束流强度,就会在旧型号的电视屏幕上形成明暗不同的光点形成各种图案和文字。(新型号的平板电视工作原理则不同。)今天用在各种不同科学设备中的粒子加速器被的尺寸,能量,造价,复杂性,变异性和目的也大不相同;但是其基本原理则是十分简单的。埃蒙德威尔森估计如果把所有的直线加速器,回旋加速器,同步加速器对撞机计算在内的换,全球大约有超过1万台运行中的粒子加速器(绝大部分是医疗辐射用的——据mirrorliwei回复中所说)。粒子加速是物理学研究中的重要部分,同时也会成为新闻报道的科学发现中的一部分内容。最著名的粒子加速器就是高能粒子加速器,所以本条目首先讨论高能粒子加速器,然后以时间顺序来探讨其他加速器。最后一部分讨论粒子加速器在一些大众文化中的形象以及相关的技术问题。高能粒子加速器 粒子加速器是每个参与到科学传播工作中的人都十分感兴趣的事情,因为它形成了一个微观世界,而通过这个微观世界人们可以观察到科学和政治之间,科学和公众之间,跨越国界的科学之间以及科学和技术之间的相互依存关系。在这方面最明显的例证就是高能粒子加速器。高能粒子加速器运行的经费高达数千万美元,而每个加速器都需要成千上万的研究人员对此开展工作。大多数粒子加速器都健在地下的隧道系统内,除非在主要的设备输入口和对磁场和对引导粒子的磁场和地位系统进行定期维修的维修站才能观察到它的外表。全球目前有五个正在运行的高能粒子加速器。第六个高能粒子加速器,也就是所谓的超高能超导对撞机,于20世纪90年代开始建造,但是在其竣工前就被放弃了。随着第一次试验束在2009年9月产生,全球最具能量的高能粒子加速器成为欧洲粒子物理研究中心会新一代的大型强子碰撞型加速装置(LHC)。LHC可以加速线圈中的质子使其向反方向运动直到与它们前面一组具有14万亿电子伏能量的探测器发生碰撞。LHC的初始目标是收集希格斯玻色子存在及其特性的数据,希格斯玻色子有时候也被称为“上帝粒子”(其名称来源于莱昂莱德曼的一本书)。希格斯玻色子被认为是大统一理论的关键问题,该理论可以用来解释四种人类目前所知的所有的力,即强相互作用、弱相互作用、万有引力、电磁相互作用。人们还认为希格斯玻色子给粒子赋予了质量,从这个意义上说,它在理解为什么宇宙大爆炸之后物质而非反物质充斥整个宇宙,这和对称性的假设是背道而驰的。1995年开始建造LHC光束线和探测器,由于超导磁铁的问题以及其实际费用超过了起初预计费用的三倍多使得其建设工作被推迟了。 LHC的建设工作遇到了一些反对意见,这和以前位于纽约的布鲁海文国立实验室建设相对重离子碰撞机遇到的反对意见类似。有些人担心这可能会产生小型黑洞,并且可能产生不可控的后果。粒子物理学家不断地解决这些争议,最近主要是通过任命两个独立的评估委员来开展这项工作。反对者试图通过在美国法院和欧盟人权法院发起诉讼来阻止LHC的建设工作,2008年夏季这两个法院均对该案予以驳回。欧洲粒子物理研究中心的设施位于瑞士的日内瓦附近,其成员单位包括20个国家,还有另外8个国家是观察员的身份(参与并提供项目经费,但是不发挥决策作用)。该机构起初的12个成员国于1954年形成;其成员单位的数目在冷战的结束后的1990年开始增加。欧洲粒子物理研究中心实现了很多个第一次,包括由于发现W玻色子和Z玻色子而获得1984年物理学诺贝尔大奖的鲁比亚(该组织获得的第二个物理学诺贝尔奖的是1992年发明并发展了粒子探测器,特别是多丝正比室的乔治夏帕克)。这个粒子加速器综合体如今还有用来研究反物质的粒子减速器,1995年这里制造出了第一个反氢原子。也许该中心实验室最著名的就是万维网了,它制造出了超文本置标语言以使得数据可以共享,包括视频资料。该项目开始于1989年,1993年该实验室宣布任何对这些数据有兴趣的人都可以使用。目前正在开展的分布数据处理项目(融合到当前产生探测器的功能中)有可能进一步变革分布式的计算方式。其他高能粒子加速器包括俄罗斯的布德克尔布德克尔布德克尔核物理研究所的正负电子对撞机,日本高能加速器研究组织(KEK)的电子—正电子和质子—质子对撞机,德国电子同步辐射加速器中心(DESY)的电子—质子对撞机,美国费米实验室的质子—反质子对撞机。在LHC开始运行之前,这些加速器是能量最高的加速器,并且在1995年发现和测量T夸克方面是功不可没的,T夸克的发现对物理学的模型进行了确证和改进。费米实验室不仅对物理学做出了贡献,它在艺术,建设和环境科学亦有所贡献。比如,美国中西部仅存的一个草原生态系统上的野牛群变得生机勃勃。费米实验室还因其治理结构(其高校科研协会(URA)直到最近才被芝加哥大学所取代,这还是在URA的支持下实现的)以及其家庭友好型的雇佣政策而闻名,这项雇用政策使得费米实验室的40%工作人员都是女性(这和女性只占到12%的主流物理学家群体不同)。费米实验室获得了建造LHC的最大一笔合同,它为其提供最复杂的磁铁。其中的一个磁铁损坏导致了LHC建设的延误,从而其光束线没有实现于2008年9月正式运行的预定目标。加速器的种类由于可以用粒子加速器这些复杂的工具开展科学研究,因而科学传播对于粒子加速器也有一定的兴趣。直线加速器于20世纪30年代出现。其中最大的一个是伯克利国家实验室的先进光源,它被用来发现(更确切地说是建造)很多最重的原子,这些原子如今都列在了化学元素周期表中(高中化学课本中都有这个表格)。直线加速器在制造同位素方面也是有用的,比如用在一些医学成像程序中的重同位素。其缺点是利用直线加速器所产生的能级的明显不足:要获得更好的能力需要更长的电磁体以确保可以持续地对粒子进行加速。很难保证长通道的磁铁在远距离上还保持笔直的状态,即使是地壳轻微的变动的也会对其产生影响(在建造长输管道的时候也面临这个挑战,比如阿拉斯加管道系统)。还有涉及到优先使用权和政府间合作的问题。提议建设跨国的直线加速器在技术规范方面很容易实现,但是关于经费和选址的细节方面还需要进一步研究。一般来说,如果一个粒子加速器要获得更高的能量,那么电磁体就不仅要用来对粒子进行加速,还要改变它们的方向以确保粒子做回旋运动,并在这个过程中粒子被多次加速从而达期望的能量。第一个采用这个技术的粒子加速器就是同步回旋加速器。同步回旋加速器进来主要被用来产生紫外线和X射线谱的能量激光样束。这些X射线谱被用在不损害物体而对其内部进行成像方面。比如,最近利用欧洲同步辐射设备(ESRF)发现了到目前为止仍是未知的写于中世纪时期的福音书。加速器的争议一旦超导超级对撞机(SSC)建设成功,它将成为世界上最大的粒子加速器(与欧洲粒子物理研究中心27千米的LHC相比,其距离是87千米)。该对撞机的建设项目开始于1983年。1993年,在耗资22亿美元完成23千米隧道的建设工作后,美国国会通过投票决定中断该项目。在公众的印象中,该项目是美国科学政策的重大失误,但是对于这个重大失误是启动了这个项目还是中断了这个项目则没有达成共识。在终止这个项目的主要原因方面也没有达成共识。当然,造价的不断攀升——从40亿美元扩展到140亿美元——是其中一个因素。造价不断攀升的一个主要原因是建造隧道的费用以及超导磁铁的问题(根据合同,这个磁铁有费米实验室提供)。该项目被取消的其他原因包括广义上的政治发展趋势;开始设立这个项目的共和党政府和国会于1992年被民主党所取代,它们都致力于减少联邦开支和平衡预算。该项目是一个大科学项目,就此而论,它通常被用来和国际空间站进行比较并把它视为正在减少的国际空间站的竞争对手。进而,考虑到公众认为需要支持更多的“小科学”项目(即那些预算费用少于100万美元并且可以在大学和私立部门现有设施基础上开展的项目),大科学研究的整个理念都受到质疑和批评。最好把大科学声誉的下降和冷战的结束结合起来去考量,因为大科学的出现是受到“通过另外的手段延续战争”的竞争所鼓舞而出现的。该项目的管理也由于时间和金钱方面的效率低下而备受批评(比如,人们举办了一个圣诞聚会促使该项目政治上的支持者成为负面新闻报道的对象)。然而,该项目的破产最后是由于项目开始是的传播策略。对何处建立这个超导对撞机是一个竞争性的政治运动,38个周提出申请并解释为什么应该把地址选择它们那里(甚至有些州内部也有竞争)。当最终的地址确定为德克萨斯州(达拉斯的南部)的时候,对该项目的支持声音几乎一下子都倒戈相向了,并把它称为是“德克萨斯的地方建设经费”。该项目为了吸引地方荣誉和经济发展,而把基调定位于非科学的公众方面。该项目的卖点就是它会确保美国科学在全球处于领先地位,对地点的竞争也被提升到该地址会吸引全球重视的低位,有些事情并没有向预想的那样促进深入的合作。相似地,该项目主张它能以给本地区带来游客和产生副产品(比如,让德国和日本把以前用在加速器中的超导磁铁用来建设磁悬浮列车)的形式带来经济效益,但是过于关注经济效益导致了对地方建设经费的批判。简言之,对各种利益群体开展一个就该项目的优点而不是对其要解决的问题的科学研究项目也许不是一个在该项目长期运行中可以持续的且涉及到粒子加速器各种挑战的说服性策略。观察一下刚提出的下一代粒子加速器——国际直线对撞机(ILC)——在地址的选择上不疏远任何一个国家,也不牺牲非科学呼吁的可见性的情况下如何吸引众多资金以及协作方面的困难应该是很有意思的事情。大众文化中的粒子加速器由于很多原因,粒子加速器在科学传播方面也是有意思的,如果之谈机器方面的事情就显得肤浅了。粒子加速器促使很多科幻作者和影视剧导演发挥了自己的想象力。比如,(因撰写畅销书《达芬奇密码》一书而名声鹊起的)丹布朗撰写了一部名为《天使与魔鬼》的小说,在该书中欧洲粒子物理研究中心既是背景的一部分,也是故事情节的核心元素(虽然在该书中欧洲粒子物理研究中心被以小说化的形式体现出来)。与核辐射发光与众不同的是切伦科夫辐射。从技术上来说,辐射发光应该是深且鲜艳的蓝色而不是通常所描述的绿色(比如20世纪70年代电影中描述的那样,比如《哥斯拉》),并且从技术上来说切伦科夫辐射是粒子加速的产物,而不是核衰变的产物,所以在现实世界中观测这种光的最好方式就是观看粒子加速器。利用正电子和反质子(反物质的基本组成元素)的科幻电影数不胜数。早期的《星际迷航》中的情节把反物质描述为能量的源泉,而没有提到我们可以利用粒子加速器的单独存储环来制造反物质。

建材价直辖市建材价北京市建材价
文章字数:18340
点击数:6063
[ 打印当前页 ]