建设工程行业资讯新闻列表 人工客服公众号
建设工程资讯新闻
新闻时间:2020-10-05,来源:建筑培训,作者:

ILC造价

1、未来的超级对撞机,有可能产生黑洞吗?

一日之棰,日取其半,万世不竭

中国古人这一哲学思辨的背后,蕴含着“物质无限可分”的思想,在同时期的西方世界,哲学家德莫克里克特认为,世间万物都是由名为“原子”的实心微粒组成的。

1919年,物理学家卢瑟福通过轰击金箔,发现原子并不是实心微粒,而是由原子核与电子组成的,而原子核又能细分为质子和中子。

在今天的物理学最前沿,物质的最小组成单位是夸克,以及还未得到证明的“弦”,但今天的物理学家们和他们的前辈一样,仍然不知道物质是否无限可分。

在探索“世间最渺小之物”的路上,物理学家们发明了对撞机,这种直线亦或者环形的科学设备,可以将亚原子粒子加速到接近光速的水平,并且还能让它们在高度真空的管道中发生碰撞。

在碰撞发生的瞬间,高能粒子们会炸裂成更小的“物质碎片”,生成一场“粒子暴雨”,而物理学家们的任务,就是从这场暴雨中,找到一滴颜色稍显不同的“雨滴”,而这一滴雨,既是新的粒子,同时也可能是物质进一步细分后的产物。

现如今地球上最强大的对撞机

是位于瑞士和法国交界处的大型强子对撞机(LHC),这个位于地下100米身处的大科学设备,总长27公里,每次运行时,都有两座核电站为它提供电力,但对今天的物理学界来说,LHC的功率还是太小了。

2013年,LHC发现希格斯玻色子后,就已经“黔驴技穷”了,因为它的功率不足以,让物理学家对希格斯玻色子进行下一步研究。

于是乎,为了更进一步探究物质的本质,高能物理学家们开始四处游说,希望找一个或者几个国家来建造新的大对撞机。

在新的大对撞机没有着落之前,现有的大型强子对撞机已经开始了升级工作,一切顺利的话到2026年,LHC的功率就将提升5到10倍。

除了欧洲之外,日本的ILC以及我国的CEPC,也属于下一代对撞机

得益于去年杨振宁和王贻芳的“对撞机之争”,如今很多人都明白了对撞机的作用,也深刻体会到了对撞机的造价昂贵,但关于对撞机还有一点,是很多人和物理学家都忽视的,那就是它和黑洞的关系。

2008年,欧洲大型强子对撞机开机之前,曾有人担心对撞瞬间的巨大质能会生成“微型黑洞”,进而吞噬整个地球,但物理学家一致认为,LHC的功率尚不足以撞出黑洞。

那么未来的超级对撞机能撞出黑洞吗?

这个问题目前还没有答案。

在科幻小说《三体》中,人类用天文尺度大小的“环日加速器”,才生成了一个微型黑洞。而在现实世界,未来的超级对撞机如果撞出黑洞,物理学家们只能求霍金了。

因为霍金是第一个从理论角度指出“黑洞有寿命”的物理学家,在他看来质量越小的黑洞,霍金辐射就越强,蒸发速度也越快,因此理论上对撞机产生的微型黑洞,会在诞生瞬间就消失,根本来不及吞噬地球。

然而直到霍金去世,他的霍金辐射理论也还停留在理论阶段,没有得到实验层面的证明,某种意义上来说,这也是霍金没能获得诺贝尔物理学奖的原因之一。

在霍金辐射还“未经证实”的今天,还未开工建造的大型强子对撞机们,多多少少是个隐患

2、费米实验室

费米实验室:大梦想才能赢得大收获(图) 上:实验室的新主任Pier Oddone在计划实验室的未来。 下:16层高的威尔逊大楼是费米实验室的行政大楼,实验室的创始人罗伯特·威尔逊相信:一个研究型实验室应该是学术界和国际文化的中心。大楼美丽的外形和内部同样美丽的粒子物理设施深深地吸引了物理学家。 据科学时报2005年6月22日报道:费米实验室拥有迄今为止世界上最大的加速器,但一台能量更大的加速器将于2008年在欧洲高能物理实验室建成,届时,美国政府将关闭费米实验室的这台加速器,实验室何去何从?即将出任实验室新主任的Pier Oddone选择了冒险:他希望耗资60亿美元的国际直线加速器落户费米实验室,他的目标是让费米实验室在下个十年中再次成为世界物理学的中心。 但日本也在积极争取成为直线加速器的新主人。新一代的加速器究竟会花落谁家呢?《自然》杂志的记者Geoff Brumifiel走进了费米实验室,看看它的希望有多大。 坐在自己的临时办公室里,今年60岁的物理学家Pier Oddone显得从容、自信。今年7月,他将掌管美国高能物理实验室的先锋——费米国家加速器实验室(简称费米实验室)。Oddone的到来正值实验室的多事之秋:实验室的大型加速器raison d\'être已计划于今后5年内关闭。但他对实验室的未来持乐观态度。 最高的能量寻找最小的粒子 Oddone将成为实验室的第15任主任。费米实验室是美国最大的高能物理实验室,在世界上是仅次于欧洲粒子物理研究所的第二大实验室。1967年11月21日,美国总统林顿·约翰逊签署法案,授权美国原子能委员会成立国家加速器实验室。1974年5月11日,为纪念原子时代卓越的物理学家、1938年诺贝尔物理学奖获得者恩里科·费米,实验室改名为费米国家加速器实验室。实验室的目标是探索自然界最微小的部分——存在于原子中的世界,了解宇宙是如何形成和运转的,提高人类对物质和能量的基本属性的理解。 费米实验室位于伊利诺伊州大草原边上的巴达维亚,拥有2100多名政府雇员,年度预算为3.07亿美元。实验室分别于1977年6月和1995年2月发现了基本粒子和力标准模型中的两个主要部分:底夸克和顶夸克。1983年,实验室耗资1.2亿美元建造了迄今为止世界上能量最强的碰撞器Tevatron。2001年7月,物理学家在Tevatron上第一次直接观察到了τ中微子,从而开启了物理研究的一个新时代。但在未来3年里,Tevatron将被欧洲高能物理实验室一个能量更大的对撞机——大型强子加速器(Large Hadron Collider,LHC)所取代。美国政府计划在LHC启用时就关闭Tevatron,费米实验室面临一个非常不确定的未来。 由于环形电子对撞机向更高发展时遇到同步辐射能量损失随束能量的四次方增长的困难,因此,国际高能物理界达成共识:在LHC后,采用大型直线对撞机(International Linear Collider,简称ILC)作为新一代的高能物理对撞机。ILC是一个庞然大物,它将建造在总长达30多公里的地下隧道里,使用最新的超导技术以5000亿电子伏特的能量击碎电子,预计到2016年前后才可建成,造价高达60亿美元。正是因为直线对撞机昂贵又费时,全球只能建造一台。 大梦想亦是大风险 Oddone梦想让直线对撞机落户费米实验室。他希望通过与国际同行的努力,最迟于2010年底开始在费米实验室建造直线对撞机。他知道对撞机的建设需要科学界的合作、国际外交的协调和美国政府对巨额经费的承诺。这个计划是一场冒险,它既可让实验室恢复昔日的辉煌,也会因目标或未来的不确定性而让实验室飘忽不定。 物理学家们在1979年开始建造Tevatron时就是怀着这样一个大梦想,他们的目标是想确证顶夸克是否存在。夸克是构成质子、中子和其它亚原子粒子的基本元素,理论上它是由三种不带整电荷的更基本的粒子组成,顶夸克和底夸克是其中最重的粒子。费米实验室曾在1977年用环型加速器探测到底夸克的存在。寻找更重的顶夸克意味着要用5亿至15亿电子伏特的能量击碎质子或反质子,设计Tevatron的目的就是做这件事。通过进一步的改造,对撞机在1995年捕捉到了顶夸克。新发现让物理学家们欢呼雀跃,却让实验室的管理者们开始头痛:下一步该怎么办? 费米实验室并不是惟一遭遇两难处境的美国粒子物理实验室。诺贝尔奖获得者Burton Richter是位于加州的斯坦福直线加速器中心的荣誉退休主任,他在1992年时也遇到过类似的问题。当时,实验室有一台曾在1968年第一个探测到夸克的电子加速器,但这台加速器的改造已经走到了尽头,没有再发展的空间了。因此,Richter决定将加速器转变为高能的X射线源,供生物学家、化学家和材料学家确定分子和材料的结构。斯坦福直线加速器中心也开始了多样化的研究,步入了天体物理学、射线探测和宇宙学的领域。今天,斯坦福直线加速器中心欣欣向荣,年度预算稳定增加。 但费米实验室没有选择多样性。它曾在20世纪90年代决定将Tevatron升级为能量更高的加速器。这一次,他们的梦想是寻找希格斯粒子,如果理论学家的预言是正确的,那么这将有助于解释为什么宇宙中的万物都有质量。捕获希格斯粒子是费米实验室下一个伟大的梦想。 Tevatron最后一次升级花了政府数亿美元,工程于2001年完工。但老化的Tevatron的事件并没有因此完结:在过去几年中它的基础已经开始松动、下陷,一些旨在提高其能量的技术出现了意想不到的问题。今天,在经过艰难的4年后,情况变得基本稳定,但Tevatron失去了最佳时间,只有少数人相信欧洲高能物理实验室的机器在2008年启动前,希格斯粒子会在Tevatron上被发现。 这将实验室的处境置于地狱的边缘。当大型强子对撞机启动后,Tevatron将被关闭,从而让许多物理学家无所事事,Richter说:“这将他们置于特殊的境地,现在的问题是如何从这种境地中走出来。” 只有全力以赴 才能梦想成真 费米实验室可以选择类似斯坦福加速器中心的多样化。费米实验室已将自己的触角伸展到充满宇宙的不带电的微中子,但微中子的研究不足以维持实验室现有的水平。实验室的许多物理学家对实验室使命的改变不屑一顾。CDF的发言人、物理学家Young Kee Kim说:“多样化是最容易的解决方案,但最艰难的路才是最有意义的。”“从我的观点来看,我们或者成为美国的高能中心,或者失去能量的前沿地位。” Oddone同意这种观点。他说:“国际直线对撞机是实验室目前最大的机会。”在美国能源部的帮助下,费米实验室将提高它的加速器和对撞机研究,以期作为获得新设备的强大承诺。Oddone说,如果事情进展顺利,因为使用直线对撞机探测希格斯等奇异的粒子,费米实验室在下个十年中将再次成为世界物理学的中心。 但是,这只是一个大胆的假设。建造直线对撞机所需要的国际合作规模异常艰难,这里面充斥着经费的超限运作、团队间的明争暗斗和国际政治问题。即使对撞机事业向前进了,但它未必一定落户美国。日本文部省的高能加速器研究中心(KEK)的常务主任说,日本正在全力以赴地希望将对撞机能安置KEK。 未来的不确定性让实验室难以留住尚在实验室的几千名访问科学家。实际上,Tevatron的两个主要探测器CDF和DZero的运作已经面临人手不足的困境。DZero的发言人Jerry Blazey说:“许多人都想走,或者已经走了,目前我们最重要的是坚持住。” 现状让费米实验室越来越难以吸引从事线性对撞机模型研究的专家。在实验室的咖啡厅坐坐,你会发现情况好像会变得更严重。费米实验室正在尽最大努力营造良好的气氛。一种权宜之计是建一个能够让美国的研究人员可实时监测他们在欧洲高能物理研究中心的实验。负责计算机中心建造的Avi Yagil说:“我们将可以看见在欧洲实验室的科学家们看见的数据。” Oddone认为费米实验室有人才、知识和空间来建造下一代的加速器,但除非全力以赴,否则梦想不会成真。他说:“是的,这是一个巨大的风险,问题是我们寻找的答案也有巨大的意义。”

3、plc 编程的基本指令谁麻烦给介绍下

PLC的编程语言与一般计算机语言相比,具有明显的特点,它既不同于高级语言,也不同与一般的汇编语言,它既要满足易于编写,又要满足易于调试的要求。目前,还没有一种对各厂家产品都能兼容的编程语言。如三菱公司的产品有它自己的编程语言,OMRON公司的产品也有它自己的语言。但不管什么型号的PLC,其编程语言都具有以下特点:1. 图形式指令结构:程序由图形方式表达,指令由不同的图形符号组成,易于理解和记忆。系统的软件开发者已把工业控制中所需的独立运算功能编制成象征性图形,用户根据自己的需要把这些图形进行组合,并填入适当的参数。在逻辑运算部分,几乎所有的厂家都采用类似于继电器控制电路的梯形图,很容易接受。如西门子公司还采用控制系统流程图来表示,它沿用二进制逻辑元件图形符号来表达控制关系,很直观易懂。较复杂的算术运算、定时计数等,一般也参照梯形图或逻辑元件图给予表示,虽然象征性不如逻辑运算部分,也受用户欢迎2. 明确的变量常数:图形符相当于操作码,规定了运算功能,操作数由用户填人,如:K400,T120等。PLC中的变量和常数以及其取值范围有明确规定,由产品型号决定,可查阅产品目录手册。3. 简化的程序结构LC的程序结构通常很简单,典型的为块式结构,不同块完成不同的功能,使程序的调试者对整个程序的控制功能和控制顺序有清晰的概念。4. 简化应用软件生成过程:使用汇编语言和高级语言编写程序,要完成编辑、编译和连接三个过程,而使用编程语言,只需要编辑一个过程,其余由系统软件自动完成,整个编辑过程都在人机对话下进行的,不要求用户有高深的软件设计能力。5. 强化调试手段:无论是汇编程序,还是高级语言程序调试,都是令编辑人员头疼的事,而PLC的程序调试提供了完备的条件,使用编程器,利用PLC和编程器上的按键、显示和内部编辑、调试、监控等,并在软件支持下,诊断和调试操作都很简单。总之,PLC的编程语言是面向用户的,对使用者不要求具备高深的知识、不需要长时间的专门训练。 §2 编程语言的形式 本教材采用最常用的两种编程语言,一是梯形图,二是助记符语言表。采用梯形图编程,因为它直观易懂,但需要一台个人计算机及相应的编程软件;采用助记符形式便于实验,因为它只需要一台简易编程器,而不必用昂贵的图形编程器或计算机来编程。虽然一些高档的PLC还具有与计算机兼容的C语言、BASIC语言、专用的高级语言(如西门子公司的GRAPH5、三菱公司的MELSAP),还有用布尔逻辑语言、通用计算机兼容的汇编语言等。不管怎么样,各厂家的编程语言都只能适用于本厂的产品。l 编程指令:指令是PLC被告知要做什么,以及怎样去做的代码或符号。从本质上讲,指令只是一些二进制代码,这点PLC与普通的计算机是完全相同的。同时PLC也有编译系统,它可以把一些文字符号或图形符号编译成机器码,所以用户看到的PLC指令一般不是机器码而是文字代码,或图形符号。常用的助记符语句用英文文字(可用多国文字)的缩写及数字代表各相应指令。常用的图形符号即梯形图,它类似于电气原理图是符号,易为电气工作人员所接受。l 指令系统:一个PLC所具有的指令的全体称为该PLC的指令系统。它包含着指令的多少,各指令都能干什么事,代表着PLC的功能和性能。一般讲,功能强、性能好的PLC,其指令系统必然丰富,所能干的事也就多。我们在编程之前必须弄清PLC的指令系统l 程序LC指令的有序集合,PLC运行它,可进行相应的工作,当然,这里的程序是指PLC的用户程序。用户程序一般由用户设计,PLC的厂家或代销商不提供。用语句表达的程序不大直观,可读性差,特别是较复杂的程序,更难读,所以多数程序用梯形图表达。l 梯形图:梯形图是通过连线把PLC指令的梯形图符号连接在一起的连通图,用以表达所使用的PLC指令及其前后顺序,它与电气原理图很相似。它的连线有两种:一为母线,另一为内部横竖线。内部横竖线把一个个梯形图符号指令连成一个指令组,这个指令组一般总是从装载(LD)指令开始,必要时再继以若干个输入指令(含LD指令),以建立逻辑条件。最后为输出类指令,实现输出控制,或为数据控制、流程控制、通讯处理、监控工作等指令,以进行相应的工作。母线是用来连接指令组的。下图是三菱公司的FX2N系列产品的最简单的梯形图例: 它有两组,第一组用以实现启动、停止控制。第二组仅一个END指令,用以 结束程序。 l 梯形图与助记符的对应关系: 助记符指令与梯形图指令有严格的对应关系,而梯形图的连线又可把指令的顺序予以体现。一般讲,其顺序为:先输入,后输出(含其他处理);先上,后下;先左,后右。有了梯形图就可将其翻译成助记符程序。上图的助记符程序为: 地址 指令 变量 0000 LD X000 0001 OR X010 0002 AND NOT X001 0003 OUT Y0000004 END 反之根据助记符,也可画出与其对应的梯形图。l 梯形图与电气原理图的关系:如果仅考虑逻辑控制,梯形图与电气原理图也可建立起一定的对应关系。如梯形图的输出(OUT)指令,对应于继电器的线圈,而输入指令(如LD,AND,OR)对应于接点,互锁指令(IL、ILC)可看成总开关,等等。这样,原有的继电控制逻辑,经转换即可变成梯形图,再进一步转换,即可变成语句表程序。 有了这个对应关系,用PLC程序代表继电逻辑是很容易的。这也是PLC技术对传统继电控制技术的继承。补充PLC控制系统设计的要点在现代化的工业生产设备中,有大量的数字量及模拟量的控制装置,例如电机的起停,电磁阀的开闭,产品的计数,温度、压力、流量的设定与控制等,工业现场中的这些自动控制问题,若采用可编程序控制器(PLC)来解决自动控制问题已成为最有效的工具之一,本文叙述PLC控制系统设计时应该注意的问题。硬件选购目前市场上的PLC产品众多,除国产品牌外,国外有:日本的 OMRON、MITSUBISHI、FUJJ、anasonic,德国的SIEMENS,韩国的LG等。近几年,PLC产品的价格有较大的下降,其性价比越来越高,这是众多技术人员选用PLC的重要原因。那么,如何选购PLC产品呢? 1、系统规模首先应确定系统用PLC单机控制,还是用PLC形成网络,由此计算PLC输入、输出点。数,并且在选购PLC时要在实际需要点数的基础上留有一定余量(10%)。 2、确定负载类型根据PLC输出端所带的负载是直流型还是交流型,是大电流还是小电流,以及PLC输出点动作的频率等,从而确定输出端采用继电器输出,还是晶体管输出,或品闸管输出。不同的负载选用不同的输出方式,对系统的稳定运行是很重要的。 3、存储容量与速度尽管国外各厂家的PLC产品大体相同,但也有一定的区别。目前还未发现各公司之间完全兼容的产品。各个公司的开发软件都不相同,而用户程序的存储容量和指令的执行速度是两个重要指标。一般存储容量越大、速度越快的PLC价格就越高,但应该根据系统的大小合理选用PLC产品。 4、编程器的选购PLC编程可采用三种方式:是用一般的手持编程器编程,它只能用商家规定语句表中的语句编程。这种方式效率低,但对于系统容量小,用量小的产品比较适宜,并且体积小,易于现场调试,造价也较低。是用图形编程器编程,该编程器采用梯形图编程,方便直观,一般的电气人员短期内就可应用自如,但该编程器价格较高。是用IBM个人计算机加PLC软件包编程,这种方式是效率最高的一种方式,但大部分公司的PLC开发软件包价格昂贵,并且该方式不易于现场调试。因此,应根据系统的大小与难易,开发周期的长短以及资金的情况合理选购PLC产品。5、尽量选用大公司的产品其质量有保障,且技术支持好,一般售后服务也较好,还有利于你的产品扩展与软件升级。一、输入回路的设计1、电源回路 PLC供电电源一般为 AC85—240V(也有DC24V),适应电源范围较宽,但为了抗干扰,应加装电源净化元件(如电源滤波器、1:1隔离变压器等)。 2、PLC上DC24V电源的使用各公司 PLC产品上一般都有DC24V电源,但该电源容量小,为几十毫安至几百毫安,用其带负载时要注意容量,同时作好防短路措施(因为该电源的过载或短路都将影响PLC的运行)。 3、外部DC24V电源 若输入回路有 DC24V供电的接近开关、光电开关等,而PLC上DC24V电源容量不够时,要从外部提供DC24V电源;但该电源的“—”端不要与 PLC的 DC24V的“—”端以及“COM”端相连,否则会影响PLC的运行。 4、输入的灵敏度各厂家对PLC的输人端电压和电流都有规定,如日本三菱公司F7n系列PLC的输入值为DC24V、7mA,启动电流为4.5mA,关断电流小于1.5mA,因此,当输入回路串有二极管或电阻(不能完全启动),或者有并联电阻或有漏电流时(不能完全切断),就会有误动作,灵敏度下降,对此应采取措施。另一方面,当输入器件的输入电流大于PLC的最大输入电流时,也会引起误动作,应采用弱电流的输入器件,并且选用输人为共漏型输入的 PLC,Bp输入元件的公共点电位相对为负,电流是流出 PLC的输入端。 二、输出回路的设计 1、各种输出方式之间的比较 (1)继电器输出: 优点是不同公共点之间可带不同的交、直流负载,且电压也可不同,带负载电流可达2A/点;但继电器输出方式不适用于高频动作的负载,这是由继电器的寿命决定的。其寿命随带负载电流的增加而减少,一般在几十万次至Jl百万次之间,有的公司产品可达1000万次以上,响应时间为10ms。 (2)晶闸管输出: 带负载能力为0.2A/点,只能带交流负载,可适应高频动作,响应时间为1ms。 (3)晶体管输出: 最大优点是适应于高频动作,响应时间短,一般为0.2ms左右,但它只能带 DC 5—30V的负载,最大输出负载电流为0.5A/点,但每4点不得大于0.8A。 当你的系统输出频率为每分钟6次以下时,应首选继电器输出,因其电路设计简单,抗干扰和带负载能力强。当频率为10次/min以下时,既可采用继电器输出方式;也可采用PLC输出驱动达林顿三极管(5—10A),再驱动负载,可大大减小。 2、抗干扰与外部互锁当 PLC输出带感性负载,负载断电时会对PLC的输出造成浪涌电流的冲击,为此,对直流感性负载应在其旁边并接续流二极管,对交流感性负载应并接浪涌吸收电路,可有效保护PLC。当两个物理量的输出在PLC内部已进行软件互锁后,在PLC的外部也应进行互锁,以加强系统的可靠性。 3、“GOM“点的选择不同的 PLC产品,其“COM”点的数量是不一样的,有的一个“COM”点带8个输出点,有的带4个输出点,也有带2个或1个输出点的。当负载的种类多,且电流大时,采用一个“COM”点带1—2个输出点的 PLC产品;当负载数量多而种类少时,采用一个“COM”点带4—8个输出点的PLC产品。这样会对电路设计带来很多方便,每个“COM”点处加一熔丝,1—2个输出时加2A的熔丝,4—8点输出的加5—10A的熔丝,因 PLC内部一般没有熔丝。 4、PLC外部驱动电路对于 PLC输出不能直接带动负载的情况下,必须在外部采用驱动电路:可以用三极管驱,也可以用固态继电器或晶闸管电路驱动,同时应采用保护电路和浪涌吸收电路,且每路有显示二极管(LED)指示。印制板应做成插拔式,易于维修。 PLC的输入输出布线也有一定的要求,请看各公司的使用说明书。 三、扩展模块的选用 对于小的系统,如80点以内的系统.一般不需要扩展;当系统较大时,就要扩展。不同公司的产品,对系统总点数及扩展模块的数量都有限制,当扩展仍不能满足要求时,可采用网络结构;同时,有些厂家产品的个别指令不支持扩展模块,因此,在进行软件编制时要注意。当采用温度等模拟模块时,各厂家也有一些规定,请看相关的技术手册。 各公司的扩展模块种类很多,如单输入模块、单输出模块、输入输出模块、温度模块、高速输入模块等。 PLC的这种模块化设计为用户的产品开发提供了方便。 四、PLC的网络设计 当用PLC进行网络设计时,其难度比PLC单机控制大得多。首先你应选用自己较熟悉的机型,对其基本指令和功能指令有较深入的了解,并且指令的执行速度和用户程序存储容量也应仔细了解。否则,不能适应你的实时要求,造成系统崩溃。另外,对通信接口、通信协议、数据传送速度等也要考虑。 最后,还要向 PLC的商家寻求网络设计和软件技术支持及详细的技术资料,至于选用几层工作站,依你的系统大小而定。 五、软件编制 在编制软件前,应首先熟悉所选用的 PLC产品的软件说明书,待熟练后再编程。若用图形编程器或软件包编程,则可直接编程,若用手持编程器编程,应先画出梯形图,然后编程,这样可少出错,速度也快。编程结束后先空调程序,待各个动作正常后,再在设备上调试。

4、费米实验室的形成

费米实验室位于伊利诺伊州大草原边上的巴达维亚,拥有2100多名政府雇员,年度预算为3.07亿美元。实验室分别于1977年6月和1995年2月发现了基本粒子和力标准模型中的两个主要部分:底夸克和顶夸克。1983年,实验室耗资1.2亿美元建造了迄今为止世界上能量最强的碰撞器Tevatron。2001年7月,物理学家在Tevatron上第一次直接观察到了τ中微子,从而开启了物理研究的一个新时代。但在未来3年里,Tevatron将被欧洲高能物理实验室一个能量更大的对撞机——大型强子加速器(Large Hadron Collider,LHC)所取代。美国政府计划在LHC启用时就关闭Tevatron,费米实验室面临一个非常不确定的未来。 由于环形电子对撞机向更高发展时遇到同步辐射能量损失随束能量的四次方增长的困难,因此,国际高能物理界达成共识:在LHC后,采用大型直线对撞机(International Linear Collider,简称ILC)作为新一代的高能物理对撞机。ILC是一个庞然大物,它将建造在总长达30多公里的地下隧道里,使用最新的超导技术以5000亿电子伏特的能量击碎电子,预计到2016年前后才可建成,造价高达60亿美元。正是因为直线对撞机昂贵又费时,全球只能建造一台。

5、粒子加速器怎么控制粒子对撞方向?

粒子加速器 粒子加速器利用电磁场来控制小的带电粒子的速度和方向。这些粒子被加速粒子包括电子,质子,电离原子,甚至是奇特的粒子比如正电子和反质子。最简单的粒子加速器就是我们熟悉的电视接收机。阴极射线管(CRT)使用电子枪发射高速电子,经过垂直和水平的偏转线圈控制高速电子的偏转角度,最后高速电子击打屏幕上的荧光物质使其发光,通过偏压来调节电子束流强度,就会在旧型号的电视屏幕上形成明暗不同的光点形成各种图案和文字。(新型号的平板电视工作原理则不同。)今天用在各种不同科学设备中的粒子加速器被的尺寸,能量,造价,复杂性,变异性和目的也大不相同;但是其基本原理则是十分简单的。埃蒙德威尔森估计如果把所有的直线加速器,回旋加速器,同步加速器对撞机计算在内的换,全球大约有超过1万台运行中的粒子加速器(绝大部分是医疗辐射用的——据mirrorliwei回复中所说)。粒子加速是物理学研究中的重要部分,同时也会成为新闻报道的科学发现中的一部分内容。最著名的粒子加速器就是高能粒子加速器,所以本条目首先讨论高能粒子加速器,然后以时间顺序来探讨其他加速器。最后一部分讨论粒子加速器在一些大众文化中的形象以及相关的技术问题。高能粒子加速器 粒子加速器是每个参与到科学传播工作中的人都十分感兴趣的事情,因为它形成了一个微观世界,而通过这个微观世界人们可以观察到科学和政治之间,科学和公众之间,跨越国界的科学之间以及科学和技术之间的相互依存关系。在这方面最明显的例证就是高能粒子加速器。高能粒子加速器运行的经费高达数千万美元,而每个加速器都需要成千上万的研究人员对此开展工作。大多数粒子加速器都健在地下的隧道系统内,除非在主要的设备输入口和对磁场和对引导粒子的磁场和地位系统进行定期维修的维修站才能观察到它的外表。全球目前有五个正在运行的高能粒子加速器。第六个高能粒子加速器,也就是所谓的超高能超导对撞机,于20世纪90年代开始建造,但是在其竣工前就被放弃了。随着第一次试验束在2009年9月产生,全球最具能量的高能粒子加速器成为欧洲粒子物理研究中心会新一代的大型强子碰撞型加速装置(LHC)。LHC可以加速线圈中的质子使其向反方向运动直到与它们前面一组具有14万亿电子伏能量的探测器发生碰撞。LHC的初始目标是收集希格斯玻色子存在及其特性的数据,希格斯玻色子有时候也被称为“上帝粒子”(其名称来源于莱昂莱德曼的一本书)。希格斯玻色子被认为是大统一理论的关键问题,该理论可以用来解释四种人类目前所知的所有的力,即强相互作用、弱相互作用、万有引力、电磁相互作用。人们还认为希格斯玻色子给粒子赋予了质量,从这个意义上说,它在理解为什么宇宙大爆炸之后物质而非反物质充斥整个宇宙,这和对称性的假设是背道而驰的。1995年开始建造LHC光束线和探测器,由于超导磁铁的问题以及其实际费用超过了起初预计费用的三倍多使得其建设工作被推迟了。 LHC的建设工作遇到了一些反对意见,这和以前位于纽约的布鲁海文国立实验室建设相对重离子碰撞机遇到的反对意见类似。有些人担心这可能会产生小型黑洞,并且可能产生不可控的后果。粒子物理学家不断地解决这些争议,最近主要是通过任命两个独立的评估委员来开展这项工作。反对者试图通过在美国法院和欧盟人权法院发起诉讼来阻止LHC的建设工作,2008年夏季这两个法院均对该案予以驳回。欧洲粒子物理研究中心的设施位于瑞士的日内瓦附近,其成员单位包括20个国家,还有另外8个国家是观察员的身份(参与并提供项目经费,但是不发挥决策作用)。该机构起初的12个成员国于1954年形成;其成员单位的数目在冷战的结束后的1990年开始增加。欧洲粒子物理研究中心实现了很多个第一次,包括由于发现W玻色子和Z玻色子而获得1984年物理学诺贝尔大奖的鲁比亚(该组织获得的第二个物理学诺贝尔奖的是1992年发明并发展了粒子探测器,特别是多丝正比室的乔治夏帕克)。这个粒子加速器综合体如今还有用来研究反物质的粒子减速器,1995年这里制造出了第一个反氢原子。也许该中心实验室最著名的就是万维网了,它制造出了超文本置标语言以使得数据可以共享,包括视频资料。该项目开始于1989年,1993年该实验室宣布任何对这些数据有兴趣的人都可以使用。目前正在开展的分布数据处理项目(融合到当前产生探测器的功能中)有可能进一步变革分布式的计算方式。其他高能粒子加速器包括俄罗斯的布德克尔布德克尔布德克尔核物理研究所的正负电子对撞机,日本高能加速器研究组织(KEK)的电子—正电子和质子—质子对撞机,德国电子同步辐射加速器中心(DESY)的电子—质子对撞机,美国费米实验室的质子—反质子对撞机。在LHC开始运行之前,这些加速器是能量最高的加速器,并且在1995年发现和测量T夸克方面是功不可没的,T夸克的发现对物理学的模型进行了确证和改进。费米实验室不仅对物理学做出了贡献,它在艺术,建设和环境科学亦有所贡献。比如,美国中西部仅存的一个草原生态系统上的野牛群变得生机勃勃。费米实验室还因其治理结构(其高校科研协会(URA)直到最近才被芝加哥大学所取代,这还是在URA的支持下实现的)以及其家庭友好型的雇佣政策而闻名,这项雇用政策使得费米实验室的40%工作人员都是女性(这和女性只占到12%的主流物理学家群体不同)。费米实验室获得了建造LHC的最大一笔合同,它为其提供最复杂的磁铁。其中的一个磁铁损坏导致了LHC建设的延误,从而其光束线没有实现于2008年9月正式运行的预定目标。加速器的种类由于可以用粒子加速器这些复杂的工具开展科学研究,因而科学传播对于粒子加速器也有一定的兴趣。直线加速器于20世纪30年代出现。其中最大的一个是伯克利国家实验室的先进光源,它被用来发现(更确切地说是建造)很多最重的原子,这些原子如今都列在了化学元素周期表中(高中化学课本中都有这个表格)。直线加速器在制造同位素方面也是有用的,比如用在一些医学成像程序中的重同位素。其缺点是利用直线加速器所产生的能级的明显不足:要获得更好的能力需要更长的电磁体以确保可以持续地对粒子进行加速。很难保证长通道的磁铁在远距离上还保持笔直的状态,即使是地壳轻微的变动的也会对其产生影响(在建造长输管道的时候也面临这个挑战,比如阿拉斯加管道系统)。还有涉及到优先使用权和政府间合作的问题。提议建设跨国的直线加速器在技术规范方面很容易实现,但是关于经费和选址的细节方面还需要进一步研究。一般来说,如果一个粒子加速器要获得更高的能量,那么电磁体就不仅要用来对粒子进行加速,还要改变它们的方向以确保粒子做回旋运动,并在这个过程中粒子被多次加速从而达期望的能量。第一个采用这个技术的粒子加速器就是同步回旋加速器。同步回旋加速器进来主要被用来产生紫外线和X射线谱的能量激光样束。这些X射线谱被用在不损害物体而对其内部进行成像方面。比如,最近利用欧洲同步辐射设备(ESRF)发现了到目前为止仍是未知的写于中世纪时期的福音书。加速器的争议一旦超导超级对撞机(SSC)建设成功,它将成为世界上最大的粒子加速器(与欧洲粒子物理研究中心27千米的LHC相比,其距离是87千米)。该对撞机的建设项目开始于1983年。1993年,在耗资22亿美元完成23千米隧道的建设工作后,美国国会通过投票决定中断该项目。在公众的印象中,该项目是美国科学政策的重大失误,但是对于这个重大失误是启动了这个项目还是中断了这个项目则没有达成共识。在终止这个项目的主要原因方面也没有达成共识。当然,造价的不断攀升——从40亿美元扩展到140亿美元——是其中一个因素。造价不断攀升的一个主要原因是建造隧道的费用以及超导磁铁的问题(根据合同,这个磁铁有费米实验室提供)。该项目被取消的其他原因包括广义上的政治发展趋势;开始设立这个项目的共和党政府和国会于1992年被民主党所取代,它们都致力于减少联邦开支和平衡预算。该项目是一个大科学项目,就此而论,它通常被用来和国际空间站进行比较并把它视为正在减少的国际空间站的竞争对手。进而,考虑到公众认为需要支持更多的“小科学”项目(即那些预算费用少于100万美元并且可以在大学和私立部门现有设施基础上开展的项目),大科学研究的整个理念都受到质疑和批评。最好把大科学声誉的下降和冷战的结束结合起来去考量,因为大科学的出现是受到“通过另外的手段延续战争”的竞争所鼓舞而出现的。该项目的管理也由于时间和金钱方面的效率低下而备受批评(比如,人们举办了一个圣诞聚会促使该项目政治上的支持者成为负面新闻报道的对象)。然而,该项目的破产最后是由于项目开始是的传播策略。对何处建立这个超导对撞机是一个竞争性的政治运动,38个周提出申请并解释为什么应该把地址选择它们那里(甚至有些州内部也有竞争)。当最终的地址确定为德克萨斯州(达拉斯的南部)的时候,对该项目的支持声音几乎一下子都倒戈相向了,并把它称为是“德克萨斯的地方建设经费”。该项目为了吸引地方荣誉和经济发展,而把基调定位于非科学的公众方面。该项目的卖点就是它会确保美国科学在全球处于领先地位,对地点的竞争也被提升到该地址会吸引全球重视的低位,有些事情并没有向预想的那样促进深入的合作。相似地,该项目主张它能以给本地区带来游客和产生副产品(比如,让德国和日本把以前用在加速器中的超导磁铁用来建设磁悬浮列车)的形式带来经济效益,但是过于关注经济效益导致了对地方建设经费的批判。简言之,对各种利益群体开展一个就该项目的优点而不是对其要解决的问题的科学研究项目也许不是一个在该项目长期运行中可以持续的且涉及到粒子加速器各种挑战的说服性策略。观察一下刚提出的下一代粒子加速器——国际直线对撞机(ILC)——在地址的选择上不疏远任何一个国家,也不牺牲非科学呼吁的可见性的情况下如何吸引众多资金以及协作方面的困难应该是很有意思的事情。大众文化中的粒子加速器由于很多原因,粒子加速器在科学传播方面也是有意思的,如果之谈机器方面的事情就显得肤浅了。粒子加速器促使很多科幻作者和影视剧导演发挥了自己的想象力。比如,(因撰写畅销书《达芬奇密码》一书而名声鹊起的)丹布朗撰写了一部名为《天使与魔鬼》的小说,在该书中欧洲粒子物理研究中心既是背景的一部分,也是故事情节的核心元素(虽然在该书中欧洲粒子物理研究中心被以小说化的形式体现出来)。与核辐射发光与众不同的是切伦科夫辐射。从技术上来说,辐射发光应该是深且鲜艳的蓝色而不是通常所描述的绿色(比如20世纪70年代电影中描述的那样,比如《哥斯拉》),并且从技术上来说切伦科夫辐射是粒子加速的产物,而不是核衰变的产物,所以在现实世界中观测这种光的最好方式就是观看粒子加速器。利用正电子和反质子(反物质的基本组成元素)的科幻电影数不胜数。早期的《星际迷航》中的情节把反物质描述为能量的源泉,而没有提到我们可以利用粒子加速器的单独存储环来制造反物质。

工程结算价
文章字数:15395
点击数:6294
[ 打印当前页 ]